Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Phương Anh
Xem chi tiết
Lê Thị Kim Ngân
28 tháng 7 2021 lúc 11:34

a) BD=BC/2=12/2=6

Vậy BC=6cm

Áp dụng định lý Py ta go vào tam giác vuông ABD, ta có:

\(AB^2+BD^2=AD^2\)

\(10^2+6^2=136\)

=> AD=\(\sqrt{136}\)

Lê Thị Kim Ngân
28 tháng 7 2021 lúc 11:48

b) Tam giác ABC cân tại A, đường cao AD 

=> AD là đường phân giác góc BAC  (1)

Sau đó cm góc BG là tia pg góc HBD và CG là tia pg góc DCL cắt nhu tại G.

=> AG là pg góc BAC                          (2)

Từ (1) và (2) => AG và AD trùng nhau.

=>A, G, D thẳng hàng

 

 

Lê Thị Kim Ngân
28 tháng 7 2021 lúc 11:50

Vẽ HÌNH:

A B C D H L G

Hoàng Thùy Linh
Xem chi tiết
Trường Lê
Xem chi tiết
ILoveMath
23 tháng 7 2021 lúc 10:03

a) trong tam giác cân đường cao đồng thời là đường phân giác nên AH cũng là đường phân giác nên góc BAH = góc CAH

Xét ΔADH và ΔAEH có:
góc ADH=góc AEH (= 90o)

chung AH

góc HAD = góc HAE (cmt)

⇒ΔADH = ΔAEH(ch-gn)

⇒ DH = EH (2 cạnh tương ứng)

b) trong tam giác cân đường cao đồng thời là đường trung tuyến nên AH cũng là đường trung tuyến nên HB = HC

Xét ΔBDH và ΔCEH có:

góc BDH = góc CEH (=90o)

HB=HC(cmt)

góc B = góc C (ΔABC cân tại A)

⇒ ΔBDH = ΔCEH(ch-gn)

Kudo Shinichi
23 tháng 7 2021 lúc 10:23

Hình vẽ: Bạn tự vẽ hình nhé !

a, Ta có:

△ABC cân tại A nên ∠ABC= ∠ACB hay ∠ABH= ∠ACH 

                                 và AB= AC

Xét △AHB và △AHC, có:
  AB= AC           ( theo chứng minh trên )

  ∠ABH= ∠ACH ( theo chứng minh trên )

  AH: cạnh chung

Nên: △AHB= △AHC ( c.g.c)

⇒ ∠BAH= ∠CAH ( 2 góc tương ứng ) hay ∠DAH= ∠EAD

Xét △ADH và △AEH, có:

 ∠HDA= ∠HEA=90o ( Do HD ⊥ AB, HE ⊥ AC )

  AH: cạnh chung

  ∠DAH= ∠EAH ( theo chứng minh trên )

Nên: △ADH= △AEH ( cạnh huyền- góc nhọn )

 ⇒ AD= AE ( 2 cạnh tương ứng ) ( đcpcm )

b,

Ta có: Do △ADH= △AEH nên :HD= HE ( 2 cạnh tương ứng )

          AB= AC 

    ⇒ AD+ DB= AE+EC

  mà AD= AE nên DB= EC

Xét △BDH và △CEH, có:

  ∠BDH= ∠CEH=90o 

  HD= HE           ( theo chứng minh trên )

  DB= EC           ( theo chứng minh trên ) 

Nên △BDH= △CEH ( c.g.c ) ( đcpcm)

Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 14:01

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{DAH}=\widehat{EAH}\)

Xét ΔDAH vuông tại D và ΔEAH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)(cmt)

Do đó: ΔDAH=ΔEAH(Cạnh huyền-góc nhọn)

Suy ra: AD=AE(Hai cạnh tương ứng)

b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có 

HB=HC(ΔABH=ΔACH)

HD=HE(ΔDAH=ΔEAH)

Do đó: ΔDBH=ΔECH(cạnh huyền-cạnh góc vuông)

Regina _K
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 13:15

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

Do đó: ΔABD=ΔACE
Suy ra: AD=AE

b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)

d: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)

nên ΔHBC cân tại H

=>HB=HC

hay H nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(2)

Từ (1) và (2) suy ra A,H,M thẳng hàng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 5 2018 lúc 4:06

Bùi Thanh Sơn
30 tháng 4 2021 lúc 19:47

a, Xét tam giác ABH và tam giác ACH vuông tại H có:   +, AB = AC ( vì tam giác ABC cân tại A)

                                                                                     +, AH chung

=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm

b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng

c, Vì  tam giác ABH = tam giác ACH => góc BAH = góc CAH

Xét tam giác ABG và tam giác ACG có 

AB = AC ( vì tam giác ABC cân tại A )

góc BAH = góc CAH ( chứng minh trên)

AG chung

=>tam giác ABG = tam giác ACG(c.g.c)

=> góc ABG = góc ACG

dao huyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 8 2022 lúc 11:43

b: Ta có: ΔABC cân tại A

mà AD là đường cao

nên Dlà trung điểm của BC

Xét ΔCDH vuông tại D và ΔADB vuông tại D có 

góc HCD=góc BAD

Do đó; ΔCDH đồng dạng với ΔADB

Suy ra: CD/AD=DH/DB

hay \(AD\cdot DH=CD^2\)

Éclore Quelle
Xem chi tiết
Kiều Vũ Linh
23 tháng 11 2023 lúc 7:27

loading... a) Ta có:

OB = OC (bán kính)

⇒ O nằm trên đường trung trực của BC (1)

Do ∆ABC cân tại A (gt)

AH là đường cao (gt)

⇒ AH cũng là đường trung trực của ∆ABC

⇒ AH là đường trung trực của BC (2)

Từ (1) và (2) suy ra O ∈ AH

⇒ O ∈ AD

Vậy AD là đường kính của (O)

b) Sửa đề: Tính độ dài các đường cao AH, BK của ∆ABC

Do AH là đường trung trực của BC (cmt)

⇒ H là trung điểm của BC

⇒ CH = BC : 2

= 12 : 2

= 6 (cm)

∆AHC vuông tại H

⇒ AC² = AH² + CH² (Pytago)

⇒ AH² = AC² - CH²

= 10² - 6²

= 64

⇒ AH = 8 (cm)

⇒ sinACH = AH/AC

= 4/5

⇒ ACH ≈ 53⁰

⇒ BCK ≈ 53⁰

∆BCK vuông tại K

⇒ sinBCK = BK/BC

⇒ BK = BC.sinBCK

= 10.sin53⁰

≈ 8 (cm)

21.Như Nguyễn
Xem chi tiết
Dương Linh
Xem chi tiết
HUỲNH MINH TRÍ
29 tháng 5 2022 lúc 21:00

Tham khảo
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

Minh acc 3
29 tháng 5 2022 lúc 21:02

refer
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC