\(\Delta ABC\)vuông tại A, trung tuyến AM, đường cao AH. Trên tia đối tia AM lấy điểm P. \(HI\perp AB\left(I\in AB\right)\)và cắt PB tại Q. \(HK\perp AC\left(K\in AC\right)\)cắt PC tại R. CM: IK // QR
Cho tam giác ABC vuông tại A có AM là đường trung tuyến, AH là đường cao. Trên tia đối của tia AM lấy P (P khác A). Các đường thẳng qua H vuông góc với AB và AC lần lượt cắt đường thẳng PB và PC tại Q và R tương ứng. CM: A là trực tâm tam giác PQR
Gọi E là giao của AC và PB, F là giao của AB và PC
Qua P kẻ đường thẳng d song song với BC
Giả sử E và F lần luợt là giao của AC và AB với d
Ta có: \(\frac{BM}{PF'}=\frac{CM}{PE'}\left(=\frac{AM}{PA}\right)\), mà \(BM=CM\) => PE'=PF'
Do đó \(\frac{PE}{EB}=\frac{PE'}{BC}=\frac{PF'}{BC}=\frac{PF}{FC}\) => EF//BC => \(\frac{EA}{AC}=\frac{FA}{AB}\)
Gọi I là giao của HQ và AB; K là giao của HR và AC
Áp dụng định lý Talet có: \(\frac{QI}{IH}=\frac{EA}{AC}=\frac{FA}{AB}=\frac{RK}{KH}\), do đó: IK//QR (1)
\(\widehat{MAC}=\widehat{AIK}\) nên PM _|_ IK
Từ (1) => PM _|_ QR hay PA _|_ QR
Gọi S là giao RA và PB
\(\frac{HI}{HK}=\frac{HQ}{HR}=\frac{HB}{HA}\Rightarrow\frac{HB}{HQ}=\frac{HA}{HR};\widehat{BHQ}=\widehat{AHR}\)
có tam giác BHQ đồng dạng với tam giác AHE
=> \(\widehat{QBH}=\widehat{RAH}\) => Tứ giác BHAS nội tiếp
Vậy \(\widehat{ASB\:}=90^o\) hay RS _|_ PQ (2)
Từ (1) (2) => A là trực tâm tam giác PQR
Cho \(\Delta ABC\) cân tại A (góc A <90 độ). Kẻ \(BD\perp AC\left(D\in AC\right),CE\perp AB\left(E\in AB\right)\), BD và CE cắt nhau tại H
a) CM:\(\Delta ABD=\Delta ACE\)
b)CM:\(\Delta BHC\)cân
c)cm:ED//BC
d) AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. CMR: \(\Delta ACM\) vuông
ba ý đầu mk lm đc roài ý cuối thì pó tay, các bn lm hộ mk zới
ba ý đầu mị lm ntn này nek, coi đúng hông ha^^
a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung
=>ABD=ACE(ch-gn)
ý b bỏ ha, lm ý c
AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A
=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)
xét tam giác ABC cân tại A:
=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)
Từ (1) và (2) => góc AED=EBC
mak hay góc mày ở vtris đồng vị nên ED//BC
\(\Delta ABC\)cân tại A , đường cao BH . M là trung điểm của BC , kẻ \(ME\perp AC;MF\perp BH;MD\perp AB\left(E\in AC;F\in BH;D\in AB\right)\)
a ) cm ME = MF
b ) AM cắt BH tại K . cm tứ giác MDKC là hình thang
vì tứ giác FMEH có góc F = 90 độ; H = 90 độ; E = 90 độ.
\(\Rightarrow\)góc M = 90 độ
\(\Rightarrow FH//ME ; FM//HE\)
\(\Rightarrow\)tứ giác FMEH là hình chữ nhật
\(\Rightarrow\)ME=FH
a ) tứ giác MFHE có :
\(\widehat{MFH}+\widehat{FHE}+\widehat{HEM}+\widehat{EMF}=360^o\)( tính chất tổng các góc trong tứ giác )
hay \(90^o+90^o+90^o+\widehat{EMF}=360^o\)
\(\Rightarrow\widehat{EMF}=360^o-90^o-90^o-90^o\)
\(\Rightarrow\widehat{EMF}=90^o\)
\(\Rightarrow FM\perp ME\left(dhnb\right)\)
mà \(HE\perp ME\left(gt\right)\)
\(\Rightarrow FM//HE\left(\perp\rightarrow//\right)\)
\(\Rightarrow FHEM\)là hình thang
mà\(\widehat{MFH}=\widehat{EMF}\left(=90^o\right)\)
\(\Rightarrow FHEM\)là hình thang cân
\(\Rightarrow ME=FH\)( tính chất cạnh trong hình thang cân )
b ) kẻ EF
có M là trung điểm của BC ( gt )
\(\Delta ABC\)cân tại A ( gt )
\(\Rightarrow AM\)là đường cao
\(\Rightarrow AM\)cũng là tia phân giác của \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAM}=\widehat{CAE}\)\(hay\widehat{DAM}=\widehat{EAM}\)
xét \(\Delta MAD\)và \(\Delta MCE\)có
\(\hept{\begin{cases}\widehat{ADM}=\widehat{AEM}=90^o\\AMchung\\\widehat{DAM}=\widehat{EAM}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta MAD=\Delta MCE\left(ch-gn\right)\)
\(\Rightarrow AD=AE\)( 2 cạnh tương ứng )
xét \(\Delta ADK\)và \(\Delta AEK\)có :
\(\hept{\begin{cases}AMchung\\\widehat{DAK}=\widehat{EAK}\left(cmt\right)\\AD=AE\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ADK=\Delta AEK\left(c-g-c\right)\)
\(\Rightarrow\widehat{AKD}=\widehat{AKE}\)( 2 góc tương ứng )
mà \(\widehat{AKD}+\widehat{AKE}=180^o\left(kb\right)\)
\(\Rightarrow\widehat{AKD}=\widehat{AKE}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AM\perp DK\left(dhnb\right)\)
AM là đường cao \(\Rightarrow AM\perp BC\)
\(\Rightarrow DK//BC\)
\(hayBK//MC\)
\(\Rightarrow MDKC\)là hình thang
Cho \(\Delta ABC\)vuông tại A (AB>AC). Kẻ đường cao AH \(\left(H\in BC\right)\). Gọi M là trung điểm AC. Trên tia đối tia MH lấy điểm D sao cho DM=MH.
a) Cm tứ giác ADCH là hình chữ nhật.
b) Gọi E là điểm đối xúng của C qua H. Cm tứ giác ADHE là hình bình hành.
c) Vẽ \(EK\perp AB\)tại K. Gọi I là trung điểm của AK. Cm KE//IH.
d) Gọi N là trung điểm EB. Cm \(HK\perp KN\).
\(\Delta\) ABC nhọn . Trên tia Ax \(\perp\left(ABC\right)\) lấy điểm S \(\ne A\) . BH là đường cao của \(\Delta ABC\left(H\in AC\right)\) . Gọi (P) là mp đi qua C và \(\perp SB\) ; giả sử (P) cắt tia đối của tia AS tại M . MH \(\cap SC=N\)
a . C/m : \(MC\perp\left(SHB\right)\) và \(SC\perp\left(MBN\right)\)
b . BC = a ; \(\widehat{ABC}=\alpha;\widehat{ACB}=\beta\)
Min S \(\Delta SMC\) theo a ; \(\alpha;\beta\) khi S di động trên tia Ax
(Em cần câu b ạ)
thầy lâm ơi ra giải hộ anh Sanata ah
em ko bt làm
\(SC\perp\left(MBN\right)\Rightarrow MN\perp SC\)
\(\Rightarrow\widehat{AMN}=\widehat{SCA}\) (cùng phụ \(\widehat{CSA}\))
Đặt \(\widehat{SCA}=x\)
\(\Rightarrow SA=AC.tanx\) ; \(AM=\dfrac{AH}{tanx}\)
\(\Rightarrow SM=SA+AM=AC.tanx+\dfrac{AH}{tanx}\ge2\sqrt{AH.AC}\) (hiển nhiên cố định)
\(\Rightarrow S_{SMC}=\dfrac{1}{2}AC.SM\ge AC\sqrt{AH.AC}\)
Rồi sau đó tính AH, AC theo 3 yếu tố kia trong tam giác ABC là được (tính AB; AC theo định lý hàm sin từ đó suy ra AH)
Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB
a) Chứng minh: DB=DM
b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)
c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng
Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE
a) Chứng minh: DA=DE
b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)
c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng
Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))
a) Chứng minh: HB=HC
b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân
Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)
a) Chứng minh: \(\Delta ABD=\Delta AED;\)
b) BE là đường trung trực của đoạn thẳng AD
c) Gọi F là giao điểm của hai đường thẳng AB và ED Chứng minh BF=EC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Câu 4:
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
Do đó: ΔBAD=ΔEAD
b: Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
c: Xét ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE
góc BDF=góc EDC
Do đó: ΔBDF=ΔEDC
Suy ra: BF=EC
Cho A ABC vuông tại A(AB < AC) , đường cao AH, đường trung tuyến AM. b) Gọi D là trung điểm của AB, lấy điểm E đối xứng với M qua D. Kẻ HK I AB tại K, HI perp AC tại I. a) Chứng minh: AKHI là hình chữ nhật. Chứng minh rằng tứ giác AEBM là hình thoi? c) Chứng minh: IKIAM.
a: Xét tứ giác AKHI có
\(\widehat{AKH}=\widehat{AIH}=\widehat{KAI}=90^0\)
Do đó: AKHI là hình chữ nhật
b: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của EM
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình thoi
Cho ΔABC có AB=AC, I là trung điểm của BC.
a) CM: ΔABI=ΔACI
b) CM: AI\(\perp\)BC
c) Trên tia đối của tia BC, lấy điểm M và trên tia đối của tia CB lấy điểm N sao cho BM=CN. Cm: AM=AN
d) Kẻ \(BH\perp AM\left(H\in AM\right),CK\perp AN\left(N\in AN\right).BH\) cắt AI tại O. Cm: C,K,O thẳng hàng.
a: Xét ΔAIB và ΔAIC có
AB=AC
IB=IC
AI chung
=>ΔAIB=ΔAIC
b: ΔABC cân tại A
mà AI là trung tuyến
nên AI vuông góc CB
c: Xét ΔABM và ΔACN co
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN
Cho tam giác ABC vuông tại A, đường cao AH,kẻ HI ⊥ AB tại I, HK ⊥ AC tại K.Trên tia HI lấy điểm D sao cho DI=IH trên tia HK lấy điểm E sao cho EK=KH.C/m
a.Tứ giác AIHK là hình gì?
b.Kẻ trung tuyến AM biết AB =12 cm,AC=16cm.Tính AM
c.BC=BD+CE
a: Xét tứ giác AIHK có
\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
=>AIHK là hình chữ nhật
b: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=12^2+16^2=400\)
=>BC=20(cm)
ΔABC vuông tại A có AM là đường trung tuyến
nên \(AM=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot20=10\left(cm\right)\)
c: Xét ΔBHD có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBHD cân tại B
=>BH=BD
Xét ΔCEH có
CK là đường cao
CK là đường trung tuyến
Do đó: ΔCEH cân tại C
=>CH=CE
BC=BH+CH
mà BH=BD và CH=CE
nên BC=BD+CE
a. Tứ giác AIHK là hình vuông.
Vì tam giác ABC vuông tại A, nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Do đó, AH cắt BC thành hai đoạn bằng nhau, tức là BH = CH.
Vì DI = IH và EK = KH, nên ta có DI = IH = EK = KH.
Do đó, AI = AH + IH = AH + DI = AH + EK = AK.
Vậy tứ giác AIHK là hình vuông.
b. Kẻ trung tuyến AM biết AB = 12 cm, AC = 16 cm. Ta cần tính AM.
Trung tuyến AM chia đôi đoạn BC, nên BM = MC.
Áp dụng định lý Pythagoras trong tam giác vuông ABC, ta có:
AB^2 + AC^2 = BC^2
12^2 + 16^2 = BC^2
144 + 256 = BC^2
400 = BC^2
BC = √400
BC = 20 cm
Vì BM = MC, nên BM = MC = BC/2 = 20/2 = 10 cm.
Vậy AM = AB + BM = 12 + 10 = 22 cm.
c. BC = BD + CE
Vì DI = IH và EK = KH, nên BD = DI và CE = EK.
Do đó, BC = BD + CE = DI + EK = DI + KH = DI + IH = DI + DI = 2DI.
Vậy DI = BC/2.