Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 18
Số lượng câu trả lời 185
Điểm GP 10
Điểm SP 105

Người theo dõi (12)

Bạch Dạ
soyaaa
Tô Trung Hiếu

Đang theo dõi (56)


Câu trả lời:

a, Để chứng minh \(OH \times OA = \pi^2\), chúng ta có thể sử dụng định lí thứ ba của đường tròn và định lí Euclid về tiếp tuyến và tiếp tuyến ngoại tiếp. 

 

Gọi \(R\) là bán kính của đường tròn, \(O\) là tâm của đường tròn, \(A\) là điểm nằm ngoài đường tròn, \(B\) và \(C\) là các điểm tiếp tuyến từ \(A\) đến đường tròn. \(H\) là giao điểm giữa \(OA\) và \(BC\).

 

Theo định lí thứ ba của đường tròn, ta có \(OH\) là đoạn trung bình của \(OA\) trong tam giác \(OAB\). Điều này có nghĩa là \(OH\) là trung bình hòa của các phần bằng nhau \(OA\) và \(OB\).

 

\(OA = OB = R\) (bán kính của đường tròn).

 

\(OH = \frac{OA + OB}{2} = \frac{2R}{2} = R\).

 

Vậy, \(OH = R\).

 

Để chứng minh \(OH \times OA = \pi^2\), ta có \(OH \times OA = R \times R = R^2\).

 

Nhưng theo định nghĩa, \(R\) là bán kính của đường tròn, nên \(R^2\) chính là \(\pi^2\) (bán kính mũ hai). Vì vậy, \(OH \times OA = \pi^2\).

 

b, Để chứng minh \(I\) là tâm của đường tròn nội tiếp tam giác \(ABC\), chúng ta có thể sử dụng các định lí về tiếp tuyến và tiếp tuyến ngoại tiếp.

 

Gọi \(I\) là giao điểm của \(OA\) với đường tròn. Khi đó, theo định lí về tiếp tuyến ngoại tiếp, \(OA\) vuông góc với \(AB\) tại \(B\) và \(OA\) vuông góc với \(AC\) tại \(C\).

 

Vì OA là đường trung trực của BC (do H là giao điểm giữa OA và BC, nên OH cũng là đường trung trực của BC.)

 

Nếu I là tâm của đường tròn nội tiếp tam giác ABC, thì OI cũng là đường trung trực của BC

 

Do đó, OHvà OI là cùng một đường trung trực của BC, nên OH = OI.

 

Vậy, I là tâm của đường tròn nội tiếp tam giác ABC.