Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 18
Số lượng câu trả lời 185
Điểm GP 10
Điểm SP 105

Người theo dõi (11)

Đang theo dõi (56)


Câu trả lời:

a) Để chứng minh tam giác \(ABC\) vuông, ta cần chứng minh rằng góc \(ACB\) là góc vuông.

 

Vì \(C\) là một điểm trên đường tròn \((O)\) có đường kính \(AB\), nên ta có \(AC\) là tiếp tuyến của đường tròn tại điểm \(C\). Do đó, góc \(ACB\) là góc nội tiếp tương ứng với góc \(A\).

 

Vì \(AB\) là đường kính của đường tròn, nên góc \(A\) là góc vuông (\(90^\circ\)). Vì vậy, ta có thể kết luận rằng tam giác \(ABC\) là tam giác vuông.

 

b) Để chứng minh \(40OH = OD = AB/2\), ta cần chứng minh rằng tam giác \(OHD\) là tam giác đều.

 

Vì \(H\) là trung điểm của \(AC\), nên ta có \(OH\) là đường trung bình của tam giác \(ABC\). Do tam giác \(ABC\) là tam giác vuông (\(AB\) là đường kính), nên đường trung bình \(OH\) cũng là đường cao của tam giác \(ABC\).

 

Vì vậy, ta có \(OH\) vuông góc với \(AB\) tại \(D\). Vì \(OH\) là đường cao của tam giác \(ABC\), nên \(OD\) cũng là đường cao của tam giác \(OHD\).

 

Vì \(OH\) và \(OD\) là hai đường cao của tam giác \(OHD\), nên tam giác \(OHD\) là tam giác đều. Do đó, ta có \(40OH = OD = AB/2\).

 

c) Để chứng minh \(MB\) là tiếp tuyến của đường tròn \((O)\), ta cần chứng minh rằng góc \(MBO\) là góc vuông.

 

Vì \(OE\) là đường vuông góc với \(BD\) tại \(E\), nên \(OE\) là đường cao của tam giác \(OBD\). Vì \(OD\) là đường cao của tam giác \(OHD\) (tam giác đều), nên \(OE\) cũng là đường cao của tam giác \(OHD\).

 

Vì vậy, ta có \(OE\) vuông góc với \(HD\) tại \(D\). Vì \(HD\) là tiếp tuyến của đường tròn \((O)\) tại \(D\), nên góc \(MBO\) là góc nội tiếp tương ứng với góc \(D\).

 

Vì \(OD = AB/2\) (theo phần b), nên góc \(D\) là góc vuông (\(90^\circ\)). Vì vậy, ta có thể kết luận rằng \(MB\) là tiếp tuyến của đường tròn \((O)\).