a) Ta có M là trung điểm của BC, vậy BM = MC. Vì MA = ME, nên ta có MA = ME = MC. Do đó, tam giác MEC là tam giác đều.
Vì BM = MC và tam giác MEC là tam giác đều, nên ta có AB = EC và AB // EC.
b) Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90 độ.
Vì AB // EC, nên góc BAC = góc ECA.
Vậy tam giác ACE cũng là tam giác vuông tại C.
c) Tam giác ABC và tam giác CEA có cạnh chung AC và góc AEC = góc BAC = 90 độ (vì tam giác ABC là tam giác vuông tại A).
Vậy theo trường hợp góc - cạnh - góc, ta có tam giác ABC và tam giác CEA là hai tam giác đồng dạng.
d) Ta đã biết M là trung điểm của BC, vậy BM = MC.
Vì MA = ME, nên MA = MC/2.
Do đó, AM = 1/2 BC.
e) Ta đã biết AB = EC và AB // EC.
Vì MA = ME, nên MA = MC.
Vậy theo trường hợp cạnh - góc - cạnh, ta có tam giác MAC và tam giác MEC là hai tam giác đồng dạng.
Vậy AC = BE và AC // BC.
f) Trên BE lấy K, trên AC lấy H sao cho BK = CH.
Vì M là trung điểm của BC, nên MK = MC/2.
Vì tam giác MEC là tam giác đều, nên góc MCE = 60 độ.
Vậy góc MCK = 60 độ.
Vì BK = CH, nên góc BKC = góc CHB.
Vậy góc BKC = góc CHB = 60 độ.
Vậy tam giác BKC và tam giác CHB là hai tam giác đều.
Vậy 3 điểm K, M, H thẳng hàng.