\(\left(20^{2017}+11^{2017}\right)^{2018}\) ; \(\left(20^{2018}+11^{2018}\right)^{2017}\)
So sanh
Câu 1. Tính hợp lý giá trị các biểu thức sau :
a. A = ( 689 - 31 ) - ( 269 - 131 )
b. B = \(\left(\frac{1}{2}+\frac{2016}{2017}+\frac{2017}{2018}+1\right)\times\left(\frac{2016}{2017}+\frac{2017}{2018}+\frac{3}{4}\right)-\left(\frac{1}{2}+\frac{2016}{2017}+\frac{2017}{2018}\right)\times\left(\frac{2016}{2017}+\frac{2017}{2018}+\frac{3}{4}+1\right)\)c. C = \(1-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
CMR \(\left(2018^{2017}+2017^{2017}\right)^{2018}>\left(2018^{2018}+2017^{2018}\right)^{2017}\)
Có: \(\left(2018^{2018}+2017^{2018}\right)^{2017}< \left(2018^{2017}.2018+2017^{2017}.2018\right)^{2017}\)
\(=\left(2018^{2017}+2017^{2017}\right)^{2017}.2018^{2017}< \left(2018^{2017}+2017^{2017}\right)^{2017}.\left(2018^{2017}+2017^{2017}\right)\)
\(=\left(2018^{2017}+2017^{2017}\right)^{2018}\)
giải phương trình
\(\dfrac{\left(2017-x\right)^2+\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}{\left(2017-x\right)^2-\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}=\dfrac{19}{49}\)
Chứng minh :
\(\frac{\left(2017-x\right)^2+\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}{\left(2017-x\right)^2-\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}\) \(=\)\(\frac{19}{49}\)
À khác cái dấu nhưng đề phải là giải phương trình chứ
Đặt 2017-x=a => x-2018=-a-1 phương trình trở thành:
\(\frac{a^2+a\left(-a-1\right)+\left(a-1\right)^2}{a^2-a\left(-a-1\right)+\left(a-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)
\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)
\(\Leftrightarrow8a^2+8a-30=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=2015,5\\x=2019,5\end{cases}}}\)
Vậy......................
Rut gon
\(A=\frac{\left(x+2017\right)^2+2\left(x+2018\right)\left(x-2018\right)+\left(x-2017\right)^2}{\left(x^2+2017\right)+\left(x^2-2018\right)}\)
\(\left|x-2017\right|^{2017}+\left|x-2018\right|^{2018}=1\)
Cho các số thực dương a,b,c,m,n,p thỏa mãn \(2.\sqrt[2017]{m}+2.\sqrt[2017]{n}+3.\sqrt[2017]{p}\le7\) và \(4a+4b+3c\ge42\). Đặt \(S=\dfrac{2\left(2a\right)^{2018}}{m}+\dfrac{2\left(2b\right)^{2018}}{n}+\dfrac{3c^{2018}}{p}\). KĐ đúng
A. 42<S<\(7.6^{2018}\) B.\(S>6^{2018}\) C. \(7\le S\le7.6^{2018}\) D.\(4\le S\le42\)
Áp dụng BĐT Cosi cho 2018 số:
\(2017.6^{2018}.\sqrt[2017]{m}+\dfrac{\left(2a\right)^{2018}}{m}\ge2018\sqrt[2018]{\left(6^{2018}.\sqrt[2017]{m}\right)^{2017}\dfrac{\left(2a\right)^{2018}}{m}}=2018.2.6^{2017}.a\)
\(\Leftrightarrow\dfrac{\left(2a\right)^{2018}}{m}\ge2018.2.6^{2017}.a-2017.6^{2018}.\sqrt[2017]{m}\)
\(\Leftrightarrow\dfrac{2\left(2a\right)^{2018}}{m}\ge2018.4.6^{2017}.a-2017.2.6^{2018}.\sqrt[2017]{m}\)
Tương tự: \(\dfrac{2\left(2b\right)^{2018}}{n}\ge2018.4.6^{2017}.b-2017.2.6^{2018}.\sqrt[2017]{n}\)
\(\dfrac{3.c^{2018}}{p}\ge2018.3.6^{2017}.c-2017.6^{2018}.3.\sqrt[2017]{p}\)
\(\Rightarrow S\ge2018.6^{2017}\left(4a+4b+3c\right)-2017.6^{2018}\left(2\sqrt[2017]{m}+2\sqrt[2017]{n}+3\sqrt[2017]{p}\right)\)
\(\ge2018.6^{2017}.42-2017.6^{2018}.7=7.6^{2018}>6^{2018}\)
Vậy \(S>6^{2018}\)
\(\dfrac{\left(2017-x\right)^2-\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}{\left(2017-x\right)^2+\left(2017-x\right)\left(x-2018\right)+\left(x-2018\right)^2}=\dfrac{5}{3}\)
Các bạn giải giúp mình nhé, đây là đề ôn toán hk2 lớp 8
Đặt x - 2017 = a
Phương trình trên tương đương:
\(\dfrac{\left(-a\right)^2-\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}{\left(-a\right)^2+\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}=\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{a^2+a^2-a+a^2-2a+1}{a^2-a^2+a+a^2-2a+1}=\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3a^2-3a+1}{a^2-a+1}=\dfrac{5}{3}\)
\(\Leftrightarrow9x^2-9x+3=5x^2-5x+5\)
\(\Leftrightarrow4x^2-4x-2=0\)
\(\Leftrightarrow\left(x-\dfrac{1+\sqrt{3}}{2}\right)\left(x-\dfrac{1-\sqrt{3}}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1+\sqrt{3}}{2}\\\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình: \(S=\left\{\dfrac{1+\sqrt{3}}{2};\dfrac{1-\sqrt{3}}{2}\right\}\)
Giải phương trình: \(\frac{\left(2017-x\right)^2+\left(2017-x\right)\left(x-2018\right)+\left(x-2018^2\right)}{\left(2017-x\right)^2-\left(2107-x\right)\left(x-2018\right)+\left(x-2018\right)^2}=\frac{13}{37}\)
Đây là đề thi hoc sinh giỏi lớp 9 cấp tỉnh Phú yên năm 2018-2019
Dễ thấy \(x=2017\)không là nghiệm của phương trình.
Ta có:
\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)
Đặt \(\frac{x-2018}{2017-x}=a\)
\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)
\(\Leftrightarrow24a^2+50a+24=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)