Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thành Long
Xem chi tiết
YunTae
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2021 lúc 22:32

a: Xét tứ giác OHAN có 

\(\widehat{OHA}+\widehat{ONA}=180^0\)

Do đó: OHAN là tứ giác nội tiếp

hay O,H,A,N cùng thuộc 1 đường tròn(1)

Xét tứ giác OMAN có 

\(\widehat{OMA}+\widehat{ONA}=180^0\)

Do đó: OMAN là tứ giác nội tiếp

hay O,M,A,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra O,H,M,A,N cùng nằm trên 1 đường tròn

Hồ Tài
Xem chi tiết
An Thy
30 tháng 5 2021 lúc 17:41

a) Trong (O) có BC là dây cung không đi qua O có H là trung điểm BC

\(\Rightarrow OH\bot BC\Rightarrow\angle OHA=90\) mà \(\left\{{}\begin{matrix}\angle ONA=90\\\angle OMA=90\end{matrix}\right.\Rightarrow AMHO,ANOH\) nội tiếp \(\Rightarrow A,M,N,O,H\) cùng thuộc 1 đường tròn

b) \(AMHN\) nội tiếp \(\Rightarrow\angle AHN=\angle AMN=\angle ANM=\angle AHM\)

\(\Rightarrow\) HA là phân giác góc MHN

c) \(BE\parallel AM\Rightarrow \angle HBE=\angle HAM=\angle HNM\Rightarrow BEHN\) nội tiếp 

\(\Rightarrow\angle BHE=\angle BNE=\angle BNM=\angle BCM\Rightarrow\)\(HE\parallel CM\)

Đhffyhaìoh
Xem chi tiết
KHÔI MINH
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 19:59

a: Xét tứ giác KBOD có

\(\widehat{OBK}+\widehat{ODK}=180^0\)

=>KBOD là tứ giác nội tiếp

b: Xét (O) có

KB,KD là tiếp tuyến

=>KB=KD

mà OB=OD

nên OK là trung trực của BD

=>OK cắt BD tại trung điểm của BD

=>O,I,K thẳng hàng và OK\(\perp\)BD tại I

Xét ΔKBA và ΔKCB có

\(\widehat{KBA}=\widehat{KCB}\)

\(\widehat{BKA}\) chung

Do đó: ΔKBA đồng dạng với ΔKCB

=>KB/KC=KA/KB

=>\(KB^2=KA\cdot KC\)(1)

Xét ΔKBO vuông tại B có BI là đường cao

nên \(KI\cdot KO=KB^2\left(2\right)\)

Từ (1) và (2) suy ra \(KA\cdot KC=KI\cdot KO\)

ttl169
Xem chi tiết
Lam Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 14:17

loading...

Lam Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 13:48

a: góc AMO+góc ANO=180 độ

=>AMON nội tiếp

b: Xét ΔAKM và ΔAMI có

góc AMK=góc AIM

góc MAK chung

=>ΔAKM đồng dạng với ΔAMI

=>AK/AM=AM/AI

=>AM^2=AI*AK

Xét ΔABM và ΔAMC có

góc AMB=góc ACM

góc BAM chung

=>ΔABM đồng dạng với ΔAMC

=>AB/AM=AM/AC

=>AM^2=AB*AC=AK*AI

Phạm Nguyễn Thanh Hà
Xem chi tiết