Cho đường tròn tâm (O) cố định . Từ một điểm A cố định ở bên ngoài đường tròn (O) kẻ các tiếp tuyến AM và An với đường tròn ( M và N là các tiếp điểm ) đường thẳng qua A cắt đường tròn tâm (O) tại hai điểm B và C ( B nằm giữa A và C ) gọi I là trung điểm BC . a, chứng minh tứ giác amon nội tiếp. b, gọi k là giao điểm của MN và BC . chứng minh tam giác AKM đồng dạng tam giác AMI và AK.AI=AB.AC
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: Xét ΔAKM và ΔAMI có
góc AMK=góc AIM
góc MAK chung
=>ΔAKM đồng dạng với ΔAMI
=>AK/AM=AM/AI
=>AM^2=AI*AK
Xét ΔABM và ΔAMC có
góc AMB=góc ACM
góc BAM chung
=>ΔABM đồng dạng với ΔAMC
=>AB/AM=AM/AC
=>AM^2=AB*AC=AK*AI