cho P(x)=x4+ ax3+bx2+cx+d
P(1)=10, P(2)=20, P(3)=30
Tính P(12)+P(-8)
Cho đa thức: f(x)=x4+ax3+bx2+cx+df(x)=x4+ax3+bx2+cx+d ( với a, b, c, d là các số thực). Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị của biểu thức: A=f(9)+f(-5
)
Đặt \(g\left(x\right)=f\left(x\right)-10\) (bậc 4)
\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)=0\\g\left(2\right)=0\\g\left(3\right)=0\end{matrix}\right.\Leftrightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)\) (m là hằng số)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)-10\\ \Leftrightarrow f\left(9\right)=8\cdot7\cdot6\left(9-m\right)-10=336\left(9-m\right)-10\\ f\left(-5\right)=\left(-6\right)\left(-7\right)\left(-8\right)\left(-5-m\right)-10=336\left(m+5\right)-10\)
Vậy \(A=336\left(9-m\right)+336\left(m+5\right)-20=4684\)
Chúc bạn hok tốt <3
cho đa thức P(x) = x4+ax3+bx2+cx+dx4+ax3+bx2+cx+d
P(1) = 10 ; P(2) = 20 ; P(3) = 30
Tính P(12) ; P(-8)
Cho phương trình x 4 + a x 3 + b x 2 + c x + 1 = 0 có nghiệm. Giá trị nhỏ nhất P = a 2 + b 2 + c 2 bằng
A. 2
B. 4 3
C. 8 3
D. 4
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d có bảng biến thiên như sau
Khi đó | f ( x ) | = m có bốn nghiệm phân biệt x 1 < x 2 < x 3 < 1 2 < x 4 khi và chỉ khi
A. 0 < m ≤ 1
B. 1 2 < m < 1
C. 1 2 ≤ m < 1
D. 0 < m < 1
Cho hàm số y= f(x )= ax3+ bx2+ cx+ d có bảng biến thiên như sau:
Khi đó |f(x)| = m có 4 nghiệm phân biệt x 1 < x 2 < x 3 < 1 2 < x 4 khi và chỉ khi
A. ½< m< 1
B. 0< m
C. m> 1
D. m< 1/2
Ta có f ( 0 ) = 0 f ( 1 ) = 0 f ' ( 0 ) = 0 f ' ( 1 ) = 0
↔ a = 2 b = - 3 c = 0 d = 1
, suy ra hàm số đã cho là : y= 2x3-3x2+ 1.
Ta thấy: f(x) = 0 ↔ x = 0 hoặc x = -1/2
Bảng biến thiên của hàm số y = |f(x)| như sau:
Dựa vào bảng biến thiên suy ra phương trình |f(x)| = m có bốn nghiệm phân biệt x1< x2< x3< ½< x4 khi và chỉ khi ½< m< 1.
Chọn A.
Cho hàm số y = f ( x ) = ax 3 + bx 2 + cx + d có bảng biến thiên như sau
Khi đó f x = m có bốn nghiệm phân biệt x 1 < x 2 < x 3 < 1 / 2 < x 4 khi và chỉ khi
A. .
B. .
C. .
D. .
Đáp án B
Ta có
suy ra .
Ta có: .
Bảng biến thiên của hàm số như sau:
Dựa vào bảng biến thiên suy ra phương trình có bốn nghiệm phân biệt khi và chỉ khi .
Cho hàm số bậc ba f ( x ) = a x 3 + b x 2 + c x + d có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số g ( x ) = ( x 2 - 3 x + 2 ) 2 x + 1 ( x 4 - 5 x 2 + 4 ) . f ( x ) có bao nhiêu đường tiệm cận đứng?
A. 4
B. 3
C. 2
D. 6
tìm a, b, c, d biết :
x4 + ax3 + bx2 -8x + 4= ( x2 + cx + d)
Hệ số của \(x^2+cx+d^2\) là \(d^2\)
\(\Rightarrow d^2=4\Rightarrow d=\pm2\)
Thay \(d=2\) vào biểu thức :
\(x^4+ax^3+bx^2-8x+4=x^2+cd+2\)
\(VP=x^2+cx+2=x^4+c^2x^2+4+2cx^3+4cx+4x^2=x^4+2cx^3++x^2+c^2+4++4cx+4\)
Ta có : \(x^4+2cx^3+x^2+c^2+4+4cx+4=x^4+ax^3+bx^2-8x+4\)
\(\left\{{}\begin{matrix}2c=a\\c^2+4=b\\4c=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-2\\a=-4\\b=8\end{matrix}\right.\)
Tiếp tục thay \(d=-2\) tương tự \(d=2\)
Cho hàm số f ( x ) = x 4 + a x 3 + b x 2 + c x + 1 . Biết rằng đồ thị hàm số y = f x có ít nhất một giao điểm với trục hoành. Bất đẳng thức nào sau đây đúng?
A. a 2 + b 2 + c 2 > 4 3
B. a 2 + b 2 + c 2 < 4 3
C. a 2 + b 2 + c 2 ≥ 4 3
D. a 2 + b 2 + c 2 ≤ 4 3
Cho hàm số f x = x 4 + a x 3 + b x 2 + c x + 1 . Biết rằng đồ thị hàm số y = f(x) có ít nhất một giao điểm với trục hoành. Bất đẳng thức nào sau đây là đúng?