Rút gọn các biểu thức sau:
a) B = 3 + 3/2 + 3/2 mũ 2 +...+ 3/2 mũ 9
b) C = 1/1 mũ 2 + 1/2 mũ 2 + 1/3 mũ 2 +...+ 1/50 mũ 2
rút gọn biểu thức sau b=2^100-2 mũ 99 + 2 mũ 98 - 2 mũ 97 +......+ 2 mũ 3 + 2 mũ 2 - 2+1
Ta có :
B = 2100 - 299 + 298 - 297 + ... + 22 - 2 + 1
=> B = ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )
=> 22B = 2 . [ ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 ) ]
=> 4B = ( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )
=> 4B - B = [( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )] - [( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )]
=> 3B = ( 2102 - 1 ) + ( 2 - 2101 )
=> 3B = 2101 - 1
=> B = \(\frac{2^{101} - 1}{3}\)
gọi dãy số là A, ta có:
A = 2100 - 299 - ...... - 21
2A = 2101 - 2100 - .... - 22
2A = ( 2101 - ... - 22 ) - ( 2100 - ... - 2 )
A = 2101 - 2
Mọi người giúp mik vs ạ
Thực hiện phép tính và rút gọn biểu thức
a: 5x mũ 2(5x mũ 2-2x+1)
b: (5x-2y)(x mũ 2-xy+1)
c: x(2x mũ 2-3)-x mũ 2 (5x+1)+x mũ 2
d: (2x mũ 2 +2x+1)(2x mũ 2 -2x+1)(2x mũ 2 +1 )mũ 2
a: \(=25x^4-10x^3+5x^2\)
c: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)
trong các cách rút gọn sau đây cách rút gọn nào là đúng đối với S=1+3 mũ 2+3 mũ 4+...+3 mũ 2022
a:3 mũ 2024:2+1 b:3 mũ 2024+1:2 c: 3 mũ 2022:2+1 d: không đáp án nào đúng
\(S=1+3^2+3^4+...+3^{2022}\)
\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)
\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)
d, không đáp án nào đúng
Lời giải:
$S=1+3^2+3^4+....+3^{2022}$
$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$
$\Rightarrow 9S-S=3^{2024}-1$
$\Rightarrow S=\frac{3^{2024}-1}{8}$
Đáp án D.
giúp mik với, thanks mọi người trước nhìu. Bài 1: rút gọn các biểu thức sau: a) ( a + b ) mũ 3 + ( a - b ) mũ 3 - 6ab mũ 2 b ) ( a + b ) mũ 3 - ( a -b ) mũ 3 - 6ab mũ 2 Bài 2: Cho x + y = 7 , tính giá trị biểu thức a) M = ( x + y ) mũ 3 + 2x mxu 2 + 4xy + 2y mỹ 2 b) N = x mũ 3 + y mũ 3 - 2x mũ 2 - 2y mũ 2 + 3xy( x +y) - 4xy + 3(x + y ) =10
Bài 2:
a: Ta có: \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=\left(x+y\right)^3+2\cdot\left(x+y\right)^2\)
\(=7^3+2\cdot7^2=441\)
Rút gọn :
A = 1+2+2 mũ 2 + 2 mũ 3+ ....+ 2 mũ 50
B = 1+3+3 mũ 2 +3 mũ 3+ ....+ 3 mũ 66
MỌI NGƯỜI ƠI , GIÚP MÌNH VỚI MÌNH CẦN GẤP Ạ :(
Mình làm ngắn gọn nhé.
\(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}\)
\(\Rightarrow A=2^{51}-1\)
\(B=1+3+...+3^{66}\)
\(3B=3+3^2+...+3^{67}\)
\(2B=3+3^2+...+3^{67}-1-3-...-3^{66}\)
\(2B=3^{67}-1\)
\(B=\frac{3^{67}-1}{2}\)
Bài 7. Tính nhanh
a/ 498mũ 2
b/ 93. 107
c/ 163 mũ 2+ 74.163 + 37mũ 2
d/ 1995 mũ 2 – 1994.1996
e/ 9 mũ 8.2 mũ 8 – (18mũ 4 – 1)(18 mũ 4+ 1)
f/ 125 mũ 2 - 2. 125. 25 + 25 mũ 2
Bài 8. Rút gọn các biểu thức sau
a/ (x mũ 2+ 3x+ 1)mũ 2 + (3x – 1) mữ 2 – 2(x mũ 2+ 3x+ 1)(3x– 1)
b/ (3x mũ 3+ 3x + 1)(3x mũ 3– 3x +1) – (3xmũ 3+1)mũ 2
c/ (2xmũ2+ 2x + 1)(2xmũ2 – 2x + 1) – (2xmũ 2+ 1)mũ 2
Bài 9. Rút gọn rồi tính giá trị biểu thức
a/ A = (2x + y)mũ 2 - (2x + y) (2x - y)+ y(x - y) vì x= - 2; y= 3.
b/ B = (a - 3b)mũ 2 - (a + 3b)mũ 2 - (a -1)(b -2 ) vì a =1/2; b = -3.
MN GIÚP MIK VS MIK CẦN GẤP
Bài 9:
a) Ta có: \(A=\left(2x+y\right)^2-\left(2x+y\right)\left(2x-y\right)+y\left(x-y\right)\)
\(=4x^2+4xy+y^2-4x^2+y^2-xy-y^2\)
\(=3xy-y^2\)
\(=3\cdot\left(-2\right)\cdot3-3^2=-18-9=-27\)
b) Ta có: \(B=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)
\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)
\(=-13ab+2a+b-2\)
\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)
\(=\dfrac{31}{2}\)
Bài 7:
a) \(498^2=\left(500-2\right)^2=250000-2000+4=248004\)
b) \(93\cdot107=100^2-7^2=10000-49=9951\)
c) \(163^2+74\cdot163+37^2=\left(163+37\right)^2=200^2=40000\)
d) \(1995^2-1994\cdot1996=1995^2-1995^2+1=1\)
e) \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=18^8-18^8+1=1\)
f) \(125^2-2\cdot125\cdot25+25^2=\left(125-25\right)^2=100^2=10000\)
Bài 8:
a) Ta có: \(\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x+1-3x+1\right)^2\)
\(=\left(x^2+2\right)^2\)
\(=x^4+4x^2+4\)
b) Ta có: \(\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1\right)^2-9x^2-\left(3x^3+1\right)^2\)
\(=-9x^2\)
c) Ta có: \(\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)-\left(2x^2+1\right)^2\)
\(=\left(2x^2+1\right)^2-4x^2-\left(2x^2+1\right)^2\)
\(=-4x^2\)
Bài 1: Rút gọn các biểu thức sau
a) (5x-y)(25x mũ 2 + 5xy + y mũ 2)
b) (x-3)(x mũ 2 + 3x + 9)-(54 + x mũ 3)
c) (2x+y)(4x mũ 2 - 2xy + y mũ 2) - (2x-y)(4x mũ 2 + 2xy + y mũ 2)
d) (x+y) mũ 2 + (x-y) mũ 2 + (x+y)(x-y) - 3x mũ 2
e) (x-3) mũ 3 - (x-3)(x mũ 2 + 3x + 9) +6(x+1) mũ 2
f) (x+y)(x mũ 2 - xy + y mũ 2) + (x-y)(x mũ 2 + xy + y mũ 2) - 2x mũ 3
g) x mũ 2 + 2x(y+1) + y mũ 2 + 2y + 1
a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3
b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81
c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3
d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2
e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2
= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )
= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6
= -3x2 + 39x + 6
= -3( x2 - 13x - 2 )
f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3
= x3 + y3 + x3 - y3 - 2x3
= 0
g) x2 + 2x( y + 1 ) + y2 + 2y + 1
= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )
= x2 + 2x( y + 1 ) + ( y + 1 )2
= ( x + y + 1 )2
= [ ( x + y ) + 1 ]2
= ( x + y )2 + 2( x + y ) + 1
= x2 + 2xy + y2 + 2x + 2y + 1
1.Rút gọn các biểu thức
a.(2x+1) mũ 2-4x(x.5)
b)(x+3)mũ 2 - (x+1)(x-1)
c)(x-5)mũ 2 - (x+2)mũ 2
d)(x+3)mũ 2 - (x-3)mũ 2
e)2x(x+1)-(x+3)mũ 2-x mũ 2
g)(x+3)mũ 2+(x+2)mũ 2-2(x+3)(x+2)
Câu a :
\(\left(2x+1\right)^2-4x\left(x-5\right)\)
\(=4x^2+4x+1-4x^2+20\)
\(=4x+19\)
Câu b :
\(\left(x+3\right)^2-\left(x+1\right)\left(x-1\right)\)
\(=x^2+6x+9-x^2-1\)
\(=6x-8\)
Câu c :
\(\left(x-5\right)^2-\left(x+2\right)^2\)
\(=\left(x-5-x-2\right)\left(x-5+x+2\right)\)
\(=-7\left(2x-3\right)\)
\(\text{b) }\left(x+3\right)^2-\left(x+1\right)\left(x-1\right)\\ =\left(x+3\right)^2-\left(x^2-1^2\right)\\ =x^2+2\cdot x\cdot3+3^2-x^2+1\\ =\left(x^2-x^2\right)+6x+\left(9+1\right)\\ =6x+10\\ \)
\(\text{c) }\left(x-5\right)^2-\left(x+2\right)^2\\ =\left(x^2-2\cdot x\cdot5+5^2\right)-\left(x^2+2\cdot x\cdot2+2^2\right)\\ =x^2-10x+25-x^2-4x-4\\ =\left(x^2-x^2\right)-\left(10x+4x\right)+\left(25-4\right)\\ =-14x+21\\ \)
\(\text{d) }\left(x+3\right)^2-\left(x-3\right)^2\\ =\left(x^2+2\cdot x\cdot3+3^2\right)-\left(x^2-2\cdot x\cdot3+3^2\right)\\ =x^2+6x+9-x^2+6x-9\\ =\left(x^2-x^2\right)+\left(6x+6x\right)+\left(9-9\right)\\ =12x\\ \)
\(\text{e) }2x\left(x+1\right)-\left(x+3\right)^2-x^2\\ =2x^2+2x-\left(x^2+2\cdot x\cdot3+3^2\right)-x^2\\ =2x^2+2x-x^2-6x-9-x^2\\ =\left(2x^2-x^2-x^2\right)+\left(2x-6x\right)-9\\ =-4x-9\\ \)
\(\text{g) }\left(x+3\right)^2+\left(x+2\right)^2-2\left(x+3\right)\left(x+2\right)\\ =\left[\left(x+3\right)-\left(x+2\right)\right]^2\\ =\left(x+3-x-2\right)^2\\ =1^2\\ =1\\ \)
Rút gọn:
A= 2 + 2 mũ 2 + 2 mũ 3+ ..... + 2 2017
B = 1+ 3 mũ 2 + 3 mũ 4+......+ 3 mũ 2017
a) \(A=2+2^2+2^3+...+2^{2017}\)
\(A=2\left(1+2^1+2^2+...+2^{2016}\right)\)
\(A=2.\dfrac{2^{2016+1}-1}{2-1}\)
\(A=2.\left(2^{2017}-1\right)=2^{2018}-2\)
Câu b bạn xem lại đề