Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phượng Dương Thị
Xem chi tiết
Lê Song Phương
6 tháng 7 2023 lúc 20:28

 Bài này chỉ tìm được GTLN thôi nhé bạn.

 Ta thấy \(A=-\dfrac{1}{3}x^2+2x\) 

\(A=-\dfrac{1}{3}\left(x^2-6x\right)\)

\(A=-\dfrac{1}{3}\left(x^2-6x+9\right)+3\)

\(A=-\dfrac{1}{3}\left(x-3\right)^2+3\)

 Vì \(\left(x-3\right)^2\ge0\) nên \(A\le3\) (dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)). Như vậy GTLN của A là 3, đạt được khi \(x=3\).

kudo sinhinichi
Xem chi tiết
Nguyễn Hải Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 14:06

c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)

Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)

Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)

Nii-chan
Xem chi tiết
Hiếu Lê Đức
Xem chi tiết
Trần Tuấn Hoàng
14 tháng 3 2022 lúc 17:38

a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)

\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)

b. -Để M thuộc Z thì:

\(\left(x^2+x-2\right)⋮\left(x+3\right)\)

\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)

\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)

\(\Rightarrow4⋮\left(x+3\right)\)

\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)

c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)

\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)

 

Rhider
Xem chi tiết
Lấp La Lấp Lánh
7 tháng 2 2022 lúc 17:37

1) \(B=-7x^2+9\)

Do \(x^2\ge0\forall x\Rightarrow-7x^2\le0\forall x\)

\(\Rightarrow B=-7x^2+9\le9\)

\(maxB=9\Leftrightarrow x=0\)

2) \(C=2-\left(3x-4\right)^4\)

Do \(\left(3x-4\right)^4\ge0\forall x\Rightarrow-\left(3x-4\right)^4\le0\forall x\)

\(\Rightarrow C=2-\left(3x-4\right)^4\le2\)

\(maxC=2\Leftrightarrow x=\dfrac{4}{3}\)

3) \(D=\dfrac{1}{2}x^2+3\)

Do \(\dfrac{1}{2}x^2\ge0\forall x\Rightarrow D=\dfrac{1}{2}x^2+3\ge3\)

\(minD=3\Leftrightarrow x=0\)

4) \(E=\dfrac{2016}{2-x^2+3}=\dfrac{2016}{-x^2+5}\)

Do \(x^2\ge0\forall x\Rightarrow-x^2+5\le5\forall x\)

\(\Rightarrow E=\dfrac{2016}{-x^2+5}\ge\dfrac{2016}{5}\)

\(minE=\dfrac{2016}{5}\Leftrightarrow x=0\)

Nguyễn Thái Thịnh
7 tháng 2 2022 lúc 17:40

\(B=-7x^2+9\)

Vì \(-7x^2\le0\forall x\)

\(\Rightarrow-7x^2+9\le9\forall x\)

\(\Rightarrow B_{max}=9\Leftrightarrow-7x^2=0\Leftrightarrow x=0\)

\(C=2-\left(3x-4\right)^4\)

Vì \(-\left(3x-4\right)^4\le0\forall x\)

\(\Rightarrow-\left(3x-4\right)^4+2\le2\forall x\)

\(\Rightarrow C_{max}=2\Leftrightarrow-\left(3x-4\right)^4=0\Leftrightarrow x=\dfrac{4}{3}\)

Nếu tìm GTLN thì câu \(d\) là \(D=-\dfrac{1}{2}x^2+3\)

Vì \(-\dfrac{1}{2}x^2\le0\forall x\)

\(\Rightarrow-\dfrac{1}{2}x^2+3\le3\forall x\)

\(\Rightarrow D_{max}=3\Leftrightarrow-\dfrac{1}{2}x^2=0\Leftrightarrow x=0\)

\(E=\dfrac{2016}{2-x^2+3}=\dfrac{2016}{5-x^2}\)

Vì \(x^2\ge0\forall x\)

\(\Rightarrow5-x^2\le5\forall x\)

\(\Rightarrow E_{min}=5\Leftrightarrow x=\dfrac{2016}{5}\)

 

Dương Bảo Yến
Xem chi tiết
Hoàng Ninh
28 tháng 8 2021 lúc 13:24

\(F=\left(x-1\right)^2-\left(2x+3\right)^2+5\)

\(=x^2-2x+1-\left(4x^2+12x+9\right)+5\)

\(=-3x^2-14x-3\)

\(=-3\left(x^2+\frac{14}{3}x+\frac{49}{9}\right)+\frac{40}{3}\)

\(=-3\left(x+\frac{7}{3}\right)^2\le0\forall x\) 

Dau '' = '' xay ra \(\Leftrightarrow x=\frac{-7}{3}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
28 tháng 8 2021 lúc 13:35

\(F=\left(x-1\right)^2-\left(2x+3\right)^2+5\)

\(=x^2-2x+1-\left(4x^2+12x+9\right)+5\)

\(=-3x^2-14x-3=-3\left(x^2+\frac{14}{3}x\right)-3\)

\(=-3\left(x^2+2.\frac{7}{3}x+\frac{49}{9}-\frac{49}{9}\right)-3\)

\(=-3\left(x+\frac{7}{3}\right)^2+\frac{40}{3}\le\frac{40}{3}\)

Dấu ''='' xảy ra khi x = -7/3 

Vậy GTLN của F bằng 40/3 tại x = -7/3 

Khách vãng lai đã xóa
Sakura Kinomoto
Xem chi tiết
Phan Thanh Tịnh
21 tháng 9 2016 lúc 23:02

Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)

1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :

\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)

\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :

\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)

2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :

\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)

\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)

Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)

Qasalt
Xem chi tiết