Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
người bí ẩn
Xem chi tiết
Kiều Vũ Linh
5 tháng 5 2023 lúc 11:17

loading...    

a) Sửa đề: Chứng minh ∆ABC ∽ ∆EAC

Giải:

∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10 (cm)

Do AM là đường trung tuyến ứng với cạnh huyền BC

⇒ AM = BM = CM = BC : 2

= 10 : 2 = 5 (cm)

∆AMC có AM = CM = 5 (cm)

⇒ ∆AMC cân tại M

⇒ ∠MAC = ∠MCA (hai góc ở đáy)

Do MA ⊥ DE (gt)

CE ⊥ DE (gt)

⇒ MA // DE

⇒ ∠MAC = ∠ACE (so le trong)

Mà ∠MAC = ∠MCA (cmt)

⇒ ∠MAC = ∠ACE

⇒ ∠ACE = ∠BCA (do ∠MAC = ∠BAC)

Xét hai tam giác vuông:

∆ABC và ∆EAC có:

∠BCA = ∠ACE (cmt)

⇒ ∆ABC ∽ ∆EAC (g-g)

b) Do ∆ABC ∽ ∆EAC (cmt)

⇒ AC/CE = BC/AC

⇒ CE = AC²/BC

= 8²/10

= 6,4 (cm)

Nguyễn Ngọc Thiện Nhân
5 tháng 5 2023 lúc 11:00

 

 

Kii
Xem chi tiết
Onii Chan
23 tháng 4 2021 lúc 19:55

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

Khách vãng lai đã xóa
hello
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 21:51

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔAHB\(\sim\)ΔCAB(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)

Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)

Vậy: AH=4,8cm; HB=3,6cm

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 21:49

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

Trần Thị Thanh Hiền
Xem chi tiết
Huỳnh Cẩm
Xem chi tiết
Vũ Thảo Vy
Xem chi tiết
Nhân Thiện Hoàng
10 tháng 2 2018 lúc 21:27

kho ua

Ebe Hynn
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 23:21

a: Xét ΔMEC vuông tại M và ΔABC vuông tại A có

góc C chung

=>ΔMEC đồng dạng với ΔABC

=>ME/AB=MC/AC

=>ME/3=2,5/4=5/8

=>ME=15/8cm

b: Xét ΔEAF vuông tại A và ΔEMC vuông tại M có

góc AEF=góc MEC

=>ΔEAF đồng dạng với ΔEMC

=>EA/EM=EF/EC

=>EA*EC=EF*EM

 

Đỗ Huệ Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2022 lúc 21:29

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔACB có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm; CD=40/7cm

nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2021 lúc 21:39

a) Ta có: \(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=25\)

Do đó: \(BC^2=AB^2+AC^2\)(=25)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)