a: Xét ΔMEC vuông tại M và ΔABC vuông tại A có
góc C chung
=>ΔMEC đồng dạng với ΔABC
=>ME/AB=MC/AC
=>ME/3=2,5/4=5/8
=>ME=15/8cm
b: Xét ΔEAF vuông tại A và ΔEMC vuông tại M có
góc AEF=góc MEC
=>ΔEAF đồng dạng với ΔEMC
=>EA/EM=EF/EC
=>EA*EC=EF*EM
a: Xét ΔMEC vuông tại M và ΔABC vuông tại A có
góc C chung
=>ΔMEC đồng dạng với ΔABC
=>ME/AB=MC/AC
=>ME/3=2,5/4=5/8
=>ME=15/8cm
b: Xét ΔEAF vuông tại A và ΔEMC vuông tại M có
góc AEF=góc MEC
=>ΔEAF đồng dạng với ΔEMC
=>EA/EM=EF/EC
=>EA*EC=EF*EM
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
cho tam giác ABC vuông tại a,ABlớn hơn AC. M là 1 điểm tùy ý trên cạnh BC.Qua M kẻ đường thẳng vuông góc với BC, đường thẳng này cắt đoạn AB tại E và cắt đường thẳng AC tại F.
a, chứng minh tam giác ABC đồng dạng với tam giác MFC.
b, chứng minh:BE nhân BA bằng BM nhân BC.
c,chứng minh BAM bằng ECB. Gọi K là giao điểm của đường thẳng CE và BF.
chứng minh AB là phân giác của góc MAK.
giúp e nốt bài này với ạh
Cho tam giác ABC vuông tại A có AB > AC. Lấy M là một điểm tùy ý trên cạnh BC. Qua M kẻ đường thẳng vuông góc với BC và cắt đoạn thẳng AB tại điểm I, cắt đường thẳng AC tại điểm D.
a) Chứng minh: ∆ABC đồng dạng ∆MDC
b) Chứng minh rằng: BI.BA = BM.BC
c) Chứng minh: góc BAM = ICB. Từ đó chứng minh AB là phân giác của góc MAK với K là giao điểm của CI và BD
d) Cho AB = 8cm, AC = 6cm. Khi AM là đường phân giác trong tam giác ABC hãy tính diện tích tứ giác AMBD
cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) chứng minh tam giác AEB đồng dạng với tam giác AFC
b) chứng minh tam giác AFC đồng dạng với tam giác ABC
c) tia AH cắt BC tại D. chứng minh FC là tia phân giác góc DFE
d) đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM.So sánh diện tích của 2 tam giác AFM và tam giác IOM
cho tam giác abc cân tại a (ab<ac) và d là trung điểm của bc. từ d vẽ đường thẳng vuông góc với bc cắt ac tại e.
a) cm tam giác dec đồng dạng với tam giác abc
b) đường vuông góc với bc kẻ từ b cắt ca tại f. cm bf^2=fa.fc
c) gọi I là trung điểm của ab. chứng minh tam giác fib đồng dạng với tam giác fdc
d) hai đường thẳng fi và ed giao tại m. chứng minh mc vuông góc với fc
cho tam giác abc cân tại a (ab<ac) và d là trung điểm của bc. từ d vẽ đường thẳng vuông góc với bc cắt ac tại e.
a) cm tam giác dec đồng dạng với tam giác abc
b) đường vuông góc với bc kẻ từ b cắt ca tại f. cm bf^2=fa.fc
c) gọi I là trung điểm của ab. chứng minh tam giác fib đồng dạng với tam giác fdc
d) hai đường thẳng fi và ed giao tại m. chứng minh mc vuông góc với fc
Cho tam giác ABC vuông tại A và AB<AC. Gọi D là trung điểm AC. Từ D vẽ DE vuông góc BC ( E thuộc AC).
a) Chứng minh: tam giác DEC đồng dạng tam giác ABC
b) Đường thẳng vuông góc với BC tại B cắt CA tại F. Chứng minh \(^{BF^2=FA.FC}\)
c) Gọi I là trung điểm AB. Chứng minh tam giác FIB đồng dạng tam giác FDC
d) FI cắt ED tại M. Chứng minh MC vuông góc FC
Cho tam giác ABC vuông tại A. Đường phân giác góc B cắt AC tại D, cho AB= 6cm, BC= 10cm
a) Tính AC, AD, CD
b) Từ D kẻ đường thẳng vuông góc với AC cắt BC tại K. Qua K kẻ đường thẳng vuông góc với BD tại E và cắt AB, AC lần lượt tại F,H. Chứng minh tam giác ABC đồng dạng tam giác DHK
C) Chứng minh BFDK: hình thoi
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=8cm,BC =10cm
a) Chứng minh rằng tam giác ACH đồng dạng với tam giác ABC, Tính AC,AH
Qua trung điểm M của BC kẻ đường thẳng vuông góc vs BC cắt AC ở E và AB ở D Chứng minh DA.DB=DE.DM