Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Siêu Nhân Lê
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 10 2016 lúc 22:55

Ta có : \(\frac{1}{1-ab}=1+\frac{ab}{1-ab}\le1+\frac{ab}{1-\frac{a^2+b^2}{2}}=1+\frac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\)

\(\le1+\frac{a.b}{\sqrt{a^2+c^2}.\sqrt{b^2+c^2}}\le1+\frac{1}{2}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right)\)

Tương tự , ta chứng minh được \(\frac{1}{1-bc}\le1+\frac{1}{2}\left(\frac{b^2}{b^2+a^2}+\frac{c^2}{c^2+a^2}\right)\)

\(\frac{1}{1-ac}\le1+\frac{1}{2}\left(\frac{a^2}{a^2+b^2}+\frac{c^2}{c^2+b^2}\right)\)

Cộng theo vế : \(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le3+\frac{1}{2}\left(\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\right)=\frac{9}{2}\)

 

không nói hahahahahha
5 tháng 11 2016 lúc 17:26

Ôn tập toán 8

không nói hahahahahha
7 tháng 11 2016 lúc 16:17

Ôn tập toán 8

Phạm Vũ Thanh Nhàn
Xem chi tiết
Lê Tài Bảo Châu
15 tháng 11 2019 lúc 22:10

Tham khảo

Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa
Lê Tài Bảo Châu
15 tháng 11 2019 lúc 22:11

à xl gửi lộn

Khách vãng lai đã xóa
lili
15 tháng 11 2019 lúc 22:38

Oh yeah mik lm đc r.

\(\frac{1}{\sqrt{ab+a+2}}< =\frac{1}{ab+a+2}+\frac{1}{4}\\ \)

\(=>VT< =sigma\frac{1}{ab+a+2}+\frac{3}{4}\)

\(Có\frac{1}{ab+a+2}< =\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)

\(CMTT\frac{1}{bc+c+2}< =\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

\(\frac{1}{ca+c+2}< =\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\)

Cộng lại => Vế trái <= 1/4.3/4+3/4=3/2

=> đpcm.

Khách vãng lai đã xóa
Phúc Long Nguyễn
Xem chi tiết
Thắng Nguyễn
9 tháng 4 2017 lúc 23:08

Ta có: 

\(\frac{a}{\sqrt{1+a^2}}=\frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Sau đó Cauchy.... 

Bài này quá nhiều người đăng đến ngán r`, bn quay lại tìm hoặc làm nốt nhéiiiiiiiiiiiiiiiii

Nguyễn Linh Chi
Xem chi tiết
zZz Cool Kid_new zZz
12 tháng 6 2020 lúc 10:55

Cách 1:

\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)

Tương tự:\(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right);\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\)

Tương tự cộng vế theo vế có đpcm

Cách 2:

Áp dụng Cauchy Schwarz ta dễ có:

\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+a+1\right)+1}\le\frac{1}{16}\left(\frac{3^2}{ab+a+1}+\frac{1}{1}\right)=\frac{1}{16}\left(\frac{9}{ab+a+1}+1\right)\)

Tương tự:

\(\frac{1}{bc+b+2}\le\frac{1}{16}\left(\frac{9}{bc+b+1}+1\right);\frac{1}{ca+c+2}\le\frac{1}{16}\left(\frac{9}{ca+c+1}+1\right)\)

Cộng lại:

\(LHS\le\frac{9}{16}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)+\frac{3}{16}\)

Mà \(abc=1\) nên theo bổ đề quen thuộc ta có được đẳng thức sau luôn đúng:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=1\)

Khi đó ta có được đpcm

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
12 tháng 6 2020 lúc 11:17

Vừa nghĩ ra cách này khá là oke gửi đến các bạn :))

Nháp:

Ta đặt \(\left(a;b;c\right)\rightarrow\left(\frac{u}{v};\frac{v}{w};\frac{w}{u}\right)\) thì ta có được:

\(\frac{1}{ab+a+2}=\frac{1}{\frac{u}{v}\cdot\frac{v}{w}+\frac{u}{v}+2}=\frac{vw}{uv+uw+2vw}\) đến đây ta chưa được gì  cả nên nghĩ đến hướng đi khác

Để ý rằng ta làm tử và mẫu khử nhau rồi tạo ra phân thức mới rồi nhân ngược lên ta được tử số có 2 thừa số nhân lại với nhau

Ta cần tạo ra ít mẫu nhất có thể để bớt sự phức tạp. Mà ta lại có:

\(\frac{1}{ab+a+2}=\frac{1}{\frac{u}{v}\cdot\frac{w}{u}+\frac{u}{v}+2}=\frac{v}{w+u+2v}\)

Đến đây rõ ràng đã bớt sự phức tạp. Khi đó ta có lời giải như sau:

Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{u}{v};\frac{w}{u};\frac{v}{w}\right)\)

Ta có được 

\(LHS=\frac{v}{w+u+2v}+\frac{w}{u+v+2w}+\frac{u}{v+w+2u}\)

\(=3-\left(\frac{u+v+w}{w+u+2v}+\frac{u+v+w}{u+v+2w}+\frac{u+v+w}{v+w+2u}\right)\)

\(=3-\left(u+v+w\right)\left(\frac{1}{u+w+2v}+\frac{1}{u+v+2w}+\frac{1}{v+w+2u}\right)\)

\(\le3-\left(u+v+w\right)\cdot\frac{9}{4\left(u+v+w\right)}=\frac{3}{4}\)

Đẳng thức xảy ra tại a=b=c=1

Khách vãng lai đã xóa
TRAN XUAN TUNG
12 tháng 6 2020 lúc 18:23

 \(S=\frac{1}{\frac{1}{c}+a+2}+\frac{1}{\frac{1}{a}+b+2}+\frac{1}{\frac{1}{b}+c+2}\)

Áp dụng svacxo suy ra \(4S\le\frac{1}{\frac{1}{c}+1}+\frac{1}{a+1}+...=3\)Dấu bằng xảy ra khi a=b=c=1

Khách vãng lai đã xóa
Prissy
Xem chi tiết
zZz Cool Kid_new zZz
15 tháng 9 2020 lúc 17:30

Ta dễ có:\(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)

Một cách tương tự \(\frac{1}{b^2+1}\ge1-\frac{b}{2};\frac{1}{c^2+1}\ge1-\frac{c}{2}\)

Khi đó: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge3-\frac{a+b+c}{2}\)

Cần chứng minh: \(3-\frac{a+b+c}{2}\ge\frac{3}{2}\Leftrightarrow a+b+c\le3\)

Hình như có gì đó sai sai @@

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
15 tháng 9 2020 lúc 17:41

Lời giải kia sai rồi :V Làm cách khác:

Ta có:\(\frac{1}{a^2+1}=\frac{a^2+1-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\)

Tương tự rồi ta được:

\(LHS=3-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)\)

Bất đẳng thức cần chứng minh tương đương với: 

\(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{a^2}{3a^2+3}+\frac{b^2}{3b^2+3}+\frac{c^2}{3c^2+3}\le\frac{1}{2}\)

Ta dễ có được:

\(\frac{4a^2}{3a^2+3}=\frac{4a^2}{3a^2+ab+bc+ca}=\frac{\left(a+a\right)^2}{a\left(a+b+c\right)+2a^2+bc}\le\frac{a^2}{a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\)

Tương tự:

\(\frac{4b^2}{3b^2+3}\le\frac{b^2}{b\left(a+b+c\right)}+\frac{b^2}{2b^2+ca};\frac{4c^2}{3c^2+3}\le\frac{c^2}{c\left(a+b+c\right)}+\frac{c^2}{2c^2+ab}\)

\(\Rightarrow LHS\le\frac{1}{4}\left(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}+\Sigma\frac{a^2}{2a^2+bc}\right)=\frac{1}{4}\left(1+\Sigma\frac{a^2}{2a^2+bc}\right)\)

Một cách khác ta dễ có được: \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

Done !

Khách vãng lai đã xóa
hung
Xem chi tiết
Cao Mai Hoàng
17 tháng 1 2020 lúc 5:18

bạn có đang on không chat vs mình đi

Khách vãng lai đã xóa
tth_new
24 tháng 3 2020 lúc 6:00

Trước khi đọc lời giải hãy thăm nhà em trước nhé ! See method from solution! Cảm ơn mn!

Ok, giờ chú ý:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab.ca+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=1\) với abc = 1.

Như vậy: \(VT=\sqrt{\left(\Sigma\frac{1}{\sqrt{ab+a+2}}\right)^2}\le\sqrt{3\left(\Sigma\frac{1}{\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+1}\right)}\)

\(\le\sqrt{\frac{3}{16}\left[\Sigma\left(\frac{9}{ab+a+1}+1\right)\right]}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
abc081102
Xem chi tiết
Châu Trần
Xem chi tiết
alibaba nguyễn
4 tháng 7 2017 lúc 9:43

\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(=\frac{a}{\sqrt{\left(ab+bc+ca\right)+a^2}}+\frac{b}{\sqrt{\left(ab+bc+ca\right)+b^2}}+\frac{c}{\sqrt{\left(ab+bc+ca\right)+c^2}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\le\frac{1}{2}.\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)