Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
rrrge
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Trần Thanh Phương
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

cao nam anh
20 tháng 2 2021 lúc 17:33

LOADING...

Khách vãng lai đã xóa
Truong thuy vy
Xem chi tiết
༺༒༻²ᵏ⁸
21 tháng 4 2021 lúc 6:35

\(\text{Ta có : }2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)

\(\Leftrightarrow\left(x^2+2+\frac{1}{x^2}\right)+\left(x^2-xy+\frac{y^2}{4}\right)=2-xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)

\(\text{ Lại có : }\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2\ge0\)

\(\Rightarrow2-xy\ge0\)

\(\Rightarrow xy\le2\)

Mà xy có giá trị lớn nhất 

\(\Rightarrow xy\in\left\{\left(1;2\right)\left(2;1\right)\left(-1;-2\right)\left(-2;-1\right)\right\}\)

Khách vãng lai đã xóa
ooooook
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
18 tháng 8 2023 lúc 15:14

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)

Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)

\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)

\(\Leftrightarrow4\ge2+xy\)

\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)

\(\Leftrightarrow Max\left(xy\right)=2\)

Dấu "=" xảy ra khi

\(xy\in\left\{-1;1;-2;2\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài

Hoàng Anh Thắng
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2022 lúc 21:52

\(3=x+y+xy\le\sqrt{2\left(x^2+y^2\right)}+\dfrac{x^2+y^2}{2}\)

\(\Rightarrow\left(\sqrt{x^2+y^2}-\sqrt{2}\right)\left(\sqrt{x^2+y^2}+3\sqrt{2}\right)\ge0\)

\(\Rightarrow x^2+y^2\ge2\)

\(\Rightarrow-\left(x^2+y^2\right)\le-2\)

\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\le\sqrt{2\left(9-x^2+9-y^2\right)}+\dfrac{\sqrt{2\left(x^2+y^2\right)}}{4}\)

\(P\le\sqrt{2\left(18-x^2-y^2\right)}+\dfrac{1}{4}.\sqrt{2\left(x^2+y^2\right)}\)

\(P\le\left(\sqrt{2}-1\right)\sqrt{18-x^2-y^2}+\sqrt[]{2}\sqrt{\dfrac{\left(18-x^2-y^2\right)}{2}}+\dfrac{1}{2}\sqrt{\dfrac{x^2+y^2}{2}}\)

\(P\le\left(\sqrt{2}-1\right).\sqrt{18-2}+\sqrt{\left(2+\dfrac{1}{4}\right)\left(\dfrac{18-x^2-y^2+x^2+y^2}{2}\right)}=\dfrac{1+8\sqrt{2}}{2}\)

Dấu "=" xảy ra khi \(x=y=1\)

....
Xem chi tiết
missing you =
4 tháng 6 2021 lúc 22:10

có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)

có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)

từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)

=>Min A=(1+\(\sqrt{2}\))^2

 

 

missing you =
5 tháng 6 2021 lúc 6:03

b, ta có : \(x+y=1=>2x+2y=2\)

\(B=\dfrac{1}{x^2+y^2}+\dfrac{3}{4xy}=\dfrac{4}{4x^2+4y^2}+\dfrac{6}{8xy}\)\(\ge\dfrac{\left(2+\sqrt{6}\right)^2}{\left(2x+2y\right)^2}\)

\(=\dfrac{\left(2+\sqrt{6}\right)^2}{2^2}=\dfrac{5+2\sqrt{6}}{2}\)=>\(B\ge\dfrac{5+2\sqrt{6}}{2}\)

=>\(MinB=\dfrac{5+2\sqrt{6}}{2}\)

 

Minh quý Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 11 2021 lúc 11:52

\(x^2+y^2=x+y\\ \Leftrightarrow x^2-x+y^2-y=0\\ \Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\\ A=x+y=\left(x-\dfrac{1}{2}\right)+\left(y-\dfrac{1}{2}\right)+1\)

Áp dụng Bunhiacopski:

\(\left[\left(x-\dfrac{1}{2}\right)+\left(y-\dfrac{1}{2}\right)\right]^2\le\left(1^2+1^2\right)\left[\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2\right]=2\cdot\dfrac{1}{2}=1\\ \Leftrightarrow A\le1+1=2\)\(A_{max}=2\Leftrightarrow x=y=1\)

Nguyễn Việt Lâm
14 tháng 11 2021 lúc 14:35

\(x^2+y^2\ge0\Rightarrow x+y=x^2+y^2\ge0\)

\(A_{min}=0\) khi \(x=y=0\)

Akai Haruma
14 tháng 11 2021 lúc 17:50

Cách tìm max khác:

Ta có:

$(x-1)^2\geq 0, \forall x\in\mathbb{R}$

$\Rightarrow x^2+1\geq 2x$

Tương tự: $y^2+1\geq 2y$

$\Rightarrow 2(x+y)\leq x^2+y^2+2=x+y+2$

$\Rightarrow x+y\leq 2$ hay $A\leq 2$
Vậy $A_{\max}=2$ khi $x=y=1$

Minh quý Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 8 2018 lúc 11:56