Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Vũ Anh Thư
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
Nguyệt
27 tháng 11 2018 lúc 22:08

\(A=\left|x-2006\right|+\left|x-1\right|=\left|x-2006\right|+\left|-x+1\right|\ge\left|x-2006-x+1\right|=2005\)

dấu = xảy ra khi \(\left(x-2006\right).\left(-x+1\right)\ge0\)

\(\Rightarrow1\le x\le2006\)

Vậy Min A=2015 khi và chỉ khi \(1\le x\le2006\)

Stephen Hawking
28 tháng 11 2018 lúc 18:59

\(A=|x-2006|+|x-1|=|x-2006|+|1-x|\)

\(\Rightarrow A\ge|x-2006+1-x|=|-2005|=2005\)

\(\Rightarrow minA=2005\Leftrightarrow\left(x-2006\right).\left(1-x\right)\ge0\)

\(TH1:\hept{\begin{cases}x-2006< 0\\1-x< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2006\\1< x\end{cases}}\Rightarrow\hept{\begin{cases}x< 2006\\x>1\end{cases}}\Rightarrow1< x< 2006\left(t/m\right)\)

\(TH2:\hept{\begin{cases}x-2006\ge0\\1-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2006\\1\ge x\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2006\\x\le1\end{cases}}\)(vô lý) 

Vậy \(minA=2005\Leftrightarrow1< x< 2006\)

Nguyễn Việt Hoàng
6 tháng 10 2019 lúc 19:06

Áp dụng BĐT sau : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Ta có : 

\(A=\left|x-2006\right|+\left|x-1\right|=\left|x-2006\right|+\left|1-x\right|\ge\left|x-2006+1-x\right|\)

\(\Rightarrow A\ge2005\)

Dấu''=''  xảy ra \(\Leftrightarrow\left(x-2006\right)\left(1-x\right)\ge0\)


\(\Leftrightarrow\orbr{\begin{cases}x-2006\ge0\\1-x\ge0\end{cases}}\)hoặc \(\orbr{\begin{cases}x-2006< 0\\1-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2006\\x\le1\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2006\\x>1\end{cases}}\)(loại ) 

\(\Leftrightarrow1\le x\le2006\)

Vậy ..................

khoimzx
Xem chi tiết
Hồng Phúc
20 tháng 2 2021 lúc 16:54

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):

\(A=\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)

\(=\left|3-x\right|+\left|x+3\right|+\left|1-x\right|+\left|x+1\right|\)

\(\ge\left|3-x+x+3\right|+\left|1-x+x+1\right|=8\)

\(minA=8\Leftrightarrow\left\{{}\begin{matrix}\left(3-x\right)\left(x+3\right)\ge0\\\left(1-x\right)\left(x+1\right)\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le1\)

No ri do
Xem chi tiết
Đặng Yến Linh
13 tháng 11 2016 lúc 8:28

a) GTNN = 0 khi x = -1

b) GTNN = 503 khi x =0

dang huynh
Xem chi tiết
Trần Đức Thắng
2 tháng 10 2015 lúc 17:20

Đặt x -2006 = y 

pt <=>  \(\frac{y^2-y\left(y-1\right)+\left(y-1\right)^2}{y^2+y\left(y-1\right)+\left(y-1\right)^2}=\frac{19}{49}\)

<=> \(\frac{y^2-y^2+y+y^2-2y+1}{y^2+y^2-y+y^2-2y+1}=\frac{19}{49}\)

<=> \(\frac{y^2-y+1}{3y^2-3y+1}=\frac{19}{49}\)

<=> \(49y^2-49y+49=57y^2-57y+19\)

<=> \(8y^2-8y-30=0\)

<=> \(4y^2-4y+15=0\)

Giải tiếp nha 

Mai Anh Nguyen
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 8 2021 lúc 15:08

Đặt \(x+3=t\ne0\Rightarrow x=t-3\)

\(A=\dfrac{\left(t+2\right)\left(t-4\right)}{t^2}=\dfrac{t^2-2t-8}{t^2}=-\dfrac{8}{t^2}-\dfrac{2}{t}+1=-8\left(\dfrac{1}{t}+\dfrac{1}{8}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\)

\(A_{max}=\dfrac{9}{8}\) khi \(t=-8\) hay \(x=-11\)

Mai Anh Nguyen
Xem chi tiết
BHQV
Xem chi tiết
Park Chaeyoung
7 tháng 1 2023 lúc 21:38

Ta có tính chất : 

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\rightarrow A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\ge\left|x+5+x+2+x-7+x-8\right|\)

​​\(\rightarrow A\ge\left|4x-8\right|\)

Vì \(\left|4x-8\right|\ge0\forall x\in R\) nên :

\(\rightarrow A\ge0\forall x\in R\)

Dấu "= " xảy ra khi : 

\(\left|4x-8\right|=0\) \(\Leftrightarrow4x-8=0\) 

                     \(\Leftrightarrow x=2\)

Vậy \(A_{min}=0\Leftrightarrow x=2\)

Phùng Gia Bảo
Xem chi tiết