so sánh s vs 1:
s=1/1.6+1/6.11+1/11.16+...+1/2001.1006
S=1/1.6+1/6.11+1/11.16+.....+1/496.501
5S=5.(1/1.6+1/6.11+...+1/496.501)
5S=5/1.6+5/6.11+...+5/496.501
5S=1/1-1/6+1/6-1/11+...+1/496-1/501
5S=1-1/501
5S=500/501
S=500/501:5=100/501
k nhé
ta co:5S=5/1.6+5/6.11+5/11.16+...+5/496.501
=1-1/6+1/6-1/11+1/11-1/16+.....+1/496-1/501
=1-1/501=500/501
=>S=500/501:5=100/501
MK đau tien nha bn
S = 1/1.6+1/6.11+1/11.16+...+1/496.501
1/1.6 + 1/6.11+ 1/11.16+ ....
số thứ 100 có dạng 1/(496.501)
do đó tổng trên bằng :
1/5( 1/1- 1/501)
= 100/ 501
1/1-1/6+1/6-1/11+...+1/496-1/501
=1/1-1/501=500/501
so sánh : A= 1/1.6+1/6.11+1/11.16+....+ 1/ (5n+1). (5n+6) với B= n+1/5n+6
Ta có : \(A=\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{(5n+1)(5n+6)}\)
\(=\frac{1}{5}\cdot\left[\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{5}{(5n+1)(5n+6)}\right]\)
\(=\frac{1}{5}\cdot\left[1-\frac{1}{5n+6}\right]=\frac{1}{5}\cdot\frac{5n+6-1}{5n+6}=\frac{1}{5}\cdot\frac{5(n+1)}{5n+6}=\frac{n+1}{5n+6}\)
B= 1/1.6 + 1/6.11 + 1/11.16 + ... + 1/101.106
=1/5(5/1*6+5/6*11+...+5/101*106)
=1/5(1-1/6+1/6-1/11+...+1/101-1/106)
=1/5(1-1/106)
=1/5*105/106
=21/106
B=1/1.6+1/6.11+1/11.16+...+1/101.106
\(B=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{101.106}\)
\(B=\dfrac{1}{5}.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{101}-\dfrac{1}{106}\right)\)
\(B=\dfrac{1}{5}.\left(1-\dfrac{1}{106}\right)\)
\(B=\dfrac{1}{5}.\dfrac{105}{106}\)
\(B=\dfrac{21}{106}\)
1/Tính:
a. S=\(\dfrac{5^2}{1.6}\) + \(\dfrac{5^2}{6.11}\)+ \(\dfrac{5^2}{11.16}\) + \(\dfrac{5^2}{16.21}\) + \(\dfrac{5^2}{21.26}\)
b. (1 - \(\dfrac{1}{2}\)) . (1 - \(\dfrac{1}{3}\) ) . (1- \(\dfrac{1}{4}\) ) . ( 1 - \(\dfrac{1}{5}\) ) .... ( 1 - \(\dfrac{1}{19}\) ) . ( 1 - \(\dfrac{1}{20}\))
Mk cần gấp lắm ~help me please~
Giải:
a) S=52/1.6+52/6.11+52/11.16+52/16.21+52/21.26
S=5.(5.1/6+5/6.11+5/11.16+5/16.21+5/21.26)
S=5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26)
S=5.(1/1-1/26)
S=5.25/26
S=125/26
b) (1-1/2).(1-1/3).(1-1/4).(1-1/5).....(1-1/19).(1-1/20)
=1/2.2/3.3/4.4/5.....18/19.19/20
=1.2.3.4.....18.19/2.3.4.5.....19.20
=1/20
Chúc bạn học tốt!
\(A=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{496.501}\)
Lời giải:
\(5A=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{501-496}{496.501}\)
\(=\frac{6}{1.6}-\frac{1}{1.6}+\frac{11}{6.11}-\frac{6}{6.11}+\frac{16}{11.16}-\frac{11}{11.16}+...+\frac{501}{496.501}-\frac{496}{496.501}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+....+\frac{1}{496}-\frac{1}{501}=1-\frac{1}{501}=\frac{500}{501}\)
$\Rightarrow A=\frac{100}{501}$
\(A=\dfrac{1}{5}\left(\dfrac{1}{1.6}+...+\dfrac{1}{496.501}\right)\)
\(A=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\cdot\cdot\cdot+\dfrac{1}{495}-\dfrac{1}{501}\right)\)
\(A=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)
\(A=\dfrac{1}{5}\cdot\dfrac{500}{501}=\dfrac{100}{501}\)
Tính :
E=1/1.6+1/6.11+1/11.16+...+1/496.501
Help !
Tính hợp lí :
A= 1/1.6 - 1/6.11 - 1/11.16 -1/16. 21 -...- 1/46.51
\(A=\dfrac{1}{1\cdot6}-\dfrac{1}{6\cdot11}-\dfrac{1}{11\cdot16}-\dfrac{1}{16\cdot21}-...-\dfrac{1}{46\cdot51}\)
\(=\dfrac{1}{6}-\left(\dfrac{1}{6\cdot11}+\dfrac{1}{11\cdot16}+\dfrac{1}{16\cdot21}+...+\dfrac{1}{46\cdot51}\right)\)
\(=\dfrac{1}{6}-\dfrac{1}{5}\left(\dfrac{5}{6\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{5}{16\cdot21}+...+\dfrac{5}{46\cdot51}\right)\)
\(=\dfrac{1}{6}-\dfrac{1}{5}\left(\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{46}-\dfrac{1}{51}\right)\)
\(=\dfrac{1}{6}-\dfrac{1}{5}\left(\dfrac{1}{6}-\dfrac{1}{51}\right)\)
\(=\dfrac{1}{6}-\dfrac{1}{5}\cdot\dfrac{5}{34}\)
\(=\dfrac{1}{6}-\dfrac{1}{34}\)
\(=\dfrac{7}{51}\)
Vậy \(A=\dfrac{7}{51}\)