Tìm y là số nguyên :
\(y\dfrac{5}{y}=\dfrac{86}{y}\) (\(y\dfrac{5}{y}\) là hỗn số)
TÌM SỐ NGUYÊN y THỎA MÃN:\(\dfrac{y-5}{7-y}\)=\(\dfrac{2}{-3}\)là:
Tìm các số nguyên x,y biết :
a). \(\dfrac{x}{2}\)=\(\dfrac{-5}{y}\). b). \(\dfrac{3}{x}\)=\(\dfrac{y}{4}\), trong đó x > y > 0.
c). \(\dfrac{3}{x-1}\)= y+1. d). \(\dfrac{x+2}{5}\)=\(\dfrac{1}{y}\).
a, \(\dfrac{x}{2}=-\dfrac{5}{y}\Rightarrow xy=-10\Rightarrow x;y\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
y | -10 | 10 | -5 | 5 | -2 | 2 | -1 | 1 |
c, \(\dfrac{3}{x-1}=y+1\Rightarrow\left(y+1\right)\left(x-1\right)=3\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 1 | 1 | -1 | 3 | -3 |
y + 1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 2 | -4 | 0 | -2 |
b: =>xy=12
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)
Tìm tất cả các số nguyên x,y
a)\(\dfrac{x}{2}=\dfrac{y}{5} mà x+y=35\)
b)\(\dfrac{x+2}{y+10}=\dfrac{1}{5} và y-3x=2\)
c)\(\dfrac{x}{4}=\dfrac{y}{5} và 2x-y=15\)
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)
\(b.\)
\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)
\(c.\)
\(\dfrac{x}{4}=\dfrac{y}{5}\)
\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=35
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(10;25)
b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
mà y-3x=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(1;5)
c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)
nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)
mà 2x-y=15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(20;25)
Tìm các số nguyên x,y sao cho:
a) \(\dfrac{x}{5}=\dfrac{-3}{y}\)
b) \(\dfrac{-11}{x}=\dfrac{y}{3}\)
\(a,\dfrac{x}{5}=-\dfrac{3}{y}\Rightarrow xy=-15\\ \Rightarrow xy=-1\cdot15=-15\cdot1=-5\cdot3=-3\cdot5\\ \Rightarrow\left(x;y\right)=\left\{\left(-1;-15\right);\left(1;-15\right);\left(15;-1\right);\left(-15;1\right);\left(3;-5\right);\left(-5;3\right);\left(5;-3\right);\left(-3;5\right)\right\}\)\(g,-\dfrac{11}{x}=\dfrac{y}{3}\\ \Rightarrow xy=-33\\ \Rightarrow xy=-3\cdot11=-11\cdot3=-1\cdot33=-33\cdot1\\ \Rightarrow\left(x;y\right)=\left\{\left(-3;11\right);\left(11;-3\right);\left(-11;3\right);\left(3;-11\right);\left(-1;33\right);\left(33;-1\right);\left(-33;1\right);\left(1;-33\right)\right\}\)
bài 1: TBC của 2 số là 36, số bé là 17, tìm số lớn
bài 2: Tìm y
a) 4567 + y : 34 = 10987 b)\(\dfrac{4}{3}+\dfrac{1}{2}\): y = 2
bài 3 tính
\(\dfrac{2}{5}x\dfrac{2}{5}+\dfrac{9}{8}:3\)=....................................................................
2 - (\(\dfrac{1}{7}\) x 4 + \(\dfrac{5}{21}\)) =....................................................................
Bài 1:
Tổng của 2 số là
\(36\times2=72\)
Số lớn là
\(72-17=55\)
Bài 2:
a) \(4567+y\div34=10987\)
\(y\div34=10987-4567\)
\(y\div34=6420\)
\(y=6420\times34\)
\(y=218280\)
b) \(\dfrac{4}{3}+\dfrac{1}{2}\div y=2\)
\(\dfrac{1}{2}\div y=2-\dfrac{4}{3}\)
\(\dfrac{1}{2}\div y=\dfrac{2}{3}\)
\(y=\dfrac{1}{2}\div\dfrac{2}{3}\)
\(y=\dfrac{3}{4}\)
Bài 3:
a) \(\dfrac{2}{5}\times\dfrac{2}{5}+\dfrac{9}{8}\div3=\dfrac{4}{25}+\dfrac{9}{8}\times\dfrac{1}{3}=\dfrac{4}{25}+\dfrac{3}{8}=\dfrac{107}{200}\)
b) \(2-\left(\dfrac{1}{7}\times4+\dfrac{5}{21}\right)=2-\left(\dfrac{4}{7}+\dfrac{5}{21}\right)=2-\dfrac{17}{21}=\dfrac{25}{21}\)
Bài 1 : Gọi a là số lớn, b là số bé, theo đề bài ta có :
(a+b):2=36⇒a+b=72
mà b=17
Nên a=72-17=55
Bài 2 :
a) 4567+y:34=10987
⇒ y:34=10987-4567
⇒ y:34=6420
⇒ y=6420x34
⇒ y=218280
b) \(\dfrac{4}{3}+\dfrac{1}{2}:y=2\)
\(\Rightarrow\dfrac{1}{2}:y=2-\dfrac{4}{3}\)
\(\Rightarrow\dfrac{1}{2}:y=\dfrac{2}{3}\)
\(\Rightarrow y=\dfrac{1}{2}:\dfrac{2}{3}\)
\(\Rightarrow y=\dfrac{1}{2}x\dfrac{3}{2}\)
\(\Rightarrow y=\dfrac{3}{4}\)
Bài 3 :
\(\dfrac{2}{5}x\dfrac{2}{5}+\dfrac{9}{8}:3=\dfrac{4}{25}+\dfrac{9}{8}x\dfrac{1}{3}=\dfrac{4}{25}+\dfrac{3}{8}\)
= \(\dfrac{4x8}{25x8}+\dfrac{25x3}{25x8}=\dfrac{32}{200}+\dfrac{75}{200}=\dfrac{107}{200}\)
\(2-\left(\dfrac{1}{7}x4+\dfrac{5}{21}\right)=2-\left(\dfrac{4}{7}+\dfrac{5}{21}\right)=2-\left(\dfrac{12}{21}+\dfrac{5}{21}\right)=2-\dfrac{17}{21}=\dfrac{42}{21}-\dfrac{17}{21}=\dfrac{25}{21}\)
Tìm các số nguyên x và y, biết:
a)\(\dfrac{x}{7}=\)\(\dfrac{6}{21}\) b)\(\dfrac{-5}{y}\)= \(\dfrac{20}{28}\)
c)\(\dfrac{-4}{8}=\)\(\dfrac{-7}{y}\)
Lời giải:
a. $\frac{x}{7}=\frac{6}{21}$
$x=\frac{6}{21}.7$
$x=2$
b.
$\frac{-5}{y}=\frac{20}{28}$
$y=-5:\frac{20}{28}$
$y=-7$
c.
$\frac{-4}{8}=\frac{-7}{y}$
$y=-7:\frac{-4}{8}$
$y=14$
a, \(\dfrac{x}{7}=\dfrac{6}{21}\Leftrightarrow\dfrac{3x}{21}=\dfrac{6}{21}\Rightarrow x=2\)
b, \(\dfrac{-5}{y}=\dfrac{20}{28}\Leftrightarrow\dfrac{20}{-4y}=\dfrac{20}{28}\Leftrightarrow y=-7\)
c, \(\dfrac{-4}{8}=-\dfrac{7}{y}\Rightarrow-4y=-56\Leftrightarrow y=14\)
a) Ta có: \(\dfrac{x}{7}=\dfrac{6}{21}\)
nên \(x=\dfrac{6\cdot7}{21}=\dfrac{42}{21}=2\)
b) Ta có: \(\dfrac{-5}{y}=\dfrac{20}{28}\)
nên \(y=\dfrac{-5\cdot28}{20}=\dfrac{-140}{20}=-7\)
c) Ta có: \(\dfrac{-4}{8}=\dfrac{-7}{y}\)
nên \(y=\dfrac{-7\cdot8}{-4}=\dfrac{-56}{-4}=14\)
Tìm số nguyên x , y biết : \(\dfrac{1}{x}+\dfrac{y}{3}=\dfrac{5}{6}\)
Tìm số nguyên x,y biết: \(\dfrac{5}{x}\)+\(\dfrac{y}{4}\)= \(\dfrac{1}{8}\)
\(\Leftrightarrow40+2xy=x\left(x\ne0\right)\)
\(\Leftrightarrow x\left(1-2y\right)=40\Leftrightarrow x=\dfrac{40}{1-2y}\)
Do 2y chẵn => 1-2y lẻ
Để x nguyên thì 1-2y là ước của 40
\(\Rightarrow1-2y=\left\{-5;-1;1;5\right\}\Rightarrow y=\left\{3;1;0;-2\right\}\)
\(\Rightarrow x=\left\{-8;-40;40;8\right\}\)
Tìm số nguyên x, y biết:
\(a,\dfrac{x}{5}=\dfrac{-18}{10}\) b, \(\dfrac{6}{x-1}=\)\(\dfrac{-3}{7}\) c, \(\dfrac{y-3}{12}\)=\(\dfrac{3}{y-3}\) d, \(\dfrac{x}{25}\)=\(\dfrac{-5}{x^2}\)
\(a,\dfrac{x}{5}=\dfrac{-18}{10}\\ \Rightarrow x=-\dfrac{18}{10}.5\\ \Rightarrow x=-9\\ b,\dfrac{6}{x-1}=\dfrac{-3}{7}\\ \Rightarrow6.7=-3\left(x-1\right)\\ \Rightarrow42=-3x+3\\ \Rightarrow42+3x-3=0\\ \Rightarrow3x+39=0\\ \Rightarrow3x=-39\\ \Rightarrow x=-13\\ c,\dfrac{y-3}{12}=\dfrac{3}{y-3}\\ \Rightarrow\left(y-3\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}y-2=6\\y-2=-6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}y=8\\y=-4\end{matrix}\right.\)
\(d,\dfrac{x}{25}=\dfrac{-5}{x^2}\\ \Rightarrow x^3=-125\\ \Rightarrow x^3=\left(-5\right)^3\\ \Rightarrow x=-5\)