Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ngọc Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 5 2022 lúc 19:51

Xét ΔAHM có

AE là đường cao

AE là đường trung tuyến

Do đó: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM(1)

Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAN(2)

Từ (1) và (2) suy ra \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}=2\cdot\widehat{BAC}=180^0\)

hay M,A,N thẳng hàng

Xét ΔAHB và ΔAMB có

AH=AM

\(\widehat{BAH}=\widehat{MAH}\)

AH chung

Do đó: ΔAHB=ΔAMB

Suy ra: \(\widehat{AHB}=\widehat{AMB}=90^0\)

hay BM\(\perp\)MA

hay BM\(\perp\)MN(3)

Xét ΔAHC và ΔANC có

AH=AN

\(\widehat{HAC}=\widehat{NAC}\)

AC chung

Do đó: ΔAHC=ΔANC

Suy ra: \(\widehat{AHC}=\widehat{ANC}=90^0\)

hay CN\(\perp\)NA

=>CN\(\perp\)NM(4)

Từ(3) và (4) suy ra MB//NC

Đinh Nguyễn Trà	My
Xem chi tiết
Tiffany Ho
Xem chi tiết
Chan Moon
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 9 2021 lúc 9:07

\(a,\widehat{AFH}=\widehat{AEH}=\widehat{EAF}=90^0\) nên \(AFHE\) là hcn

\(b,\) Vì \(AFHE\) là hcn nên \(AE=FH=FM\left(t/c.đối.xúng\right);AE//FH\)

\(\left\{{}\begin{matrix}AE=FM\\AE//FM\left(AE//FH\right)\end{matrix}\right.\Rightarrow AEFM\) là hbh

\(c,\) Tam giác AHN có AE vừa là đường cao và trung tuyến nên cân tại A

Do đó AE cũng là p/g \(\widehat{HAN}\)

\(\Rightarrow\widehat{NAE}=\widehat{HAE}\)

Mà \(\widehat{HAE}=\widehat{ACB}\left(cùng.phụ.với.\widehat{ACH}\right)\)

\(\Rightarrow\widehat{NAE}=\widehat{ACB}\left(1\right)\)

Vì AI là trung tuyến ứng với cạnh huyền tam giác ABC vuông tại A nên \(AI=BI=IC=\dfrac{1}{2}BC\Rightarrow\Delta AIB\) cân tại I

\(\Rightarrow\widehat{IAB}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{NAE}+\widehat{IAB}=\widehat{ACB}+\widehat{ABC}=90^0\left(\Delta ABC.vuông.tại.A\right)\\ \Rightarrow\widehat{IAN}=90^0\\ \Rightarrow AI\perp MN\)

 

 

trần minh thu
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 13:15

a: Xét ΔAMH có 

AE là đường cao

AE là đường trug tuyến

Do đó: ΔAMH cân tại A

hay AM=AN

b: Xét ΔHBM có 

BE là đường cao

BE là đường trung tuyến

Do đó:ΔHBM cân tại B

hay BH=BM
Xét ΔAHB và ΔAMB có

AH=AM

HB=MB

AB chung

Do đó: ΔAHB=ΔAMB

Suy ra: \(\widehat{AHB}=\widehat{AMB}=90^0\)

c: Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là tia phân giác của góc HAM(1)

Xét ΔAHN có 
AF là đường cao

AF là đường trung tuyến

DO đó: ΔAHN cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAN(2)

Từ (1) và (2) suy ra \(\widehat{MAN}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=180^0\)

=>M,A,N thẳng hàng

mà AM=AN(=AH)

nên A là trung điểm của MN

Vũ Thị Hoa
Xem chi tiết
Thanh Nguyen
Xem chi tiết
Trang Dang
Xem chi tiết
Xuân Trường Phạm
6 tháng 1 2021 lúc 12:49

oe

Thanh Thủy Vũ
Xem chi tiết
Phạm Đức Triệu
27 tháng 4 2021 lúc 15:02

ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Khách vãng lai đã xóa
lam phuong quynh
27 tháng 4 2021 lúc 15:59

mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung

Khách vãng lai đã xóa
lam phuong quynh
27 tháng 4 2021 lúc 16:06

d, ta có:
bd/ba=bh/bc=1/2 suy ra bd=1/2ba
suy ra d là trung điểm ab
suy ra cd là dườngd truing tuyến của tam giác abc
suy ra g thuộc cd( tc trọng tâm tâm giác)
suy ra c,g,d thẳng hàng

Khách vãng lai đã xóa