Giải hệ phương trình
\(\hept{\begin{cases}x^3\left(y^2+3y+3\right)=3y^2\\y^3\left(z^3+3z+3\right)=3z^2\\z^3\left(x^2+3x+3\right)=3x^2\end{cases}}\)
Làm nhanh cho mk nha mk cần gấp !!!!
Giải hệ phương trình sau \(\hept{\begin{cases}x^3\left(y^2+3y+1\right)=3y^2\\y^3\left(z^2+3z+1\right)=3z^2\\z^3\left(x^2+3x+1\right)=3x^2\end{cases}}\)Cần giúp gấp
Giải hệ phương trình: \(\hept{\begin{cases}x^3\left(y^2+3y+3\right)=3y^2\\y^3\left(z^2+3z+3\right)=3z^2\\z^3\left(x^2+3x+3\right)=3x^2\end{cases}}\)
Giải hệ \(\hept{\begin{cases}x^3\left(y^2+3y+3\right)=3y^2\\y^3\left(z^2+3z+3\right)=3z^2\\z^3\left(x^2+3x+3\right)=3x^2\end{cases}}\)
giải hệ phương trình
a,\(\hept{\begin{cases}xy=x+3y\\yz=2\left(2y+z\right)\\zx=3\left(3z+2x\right)\end{cases}}\)
b,\(\hept{\begin{cases}x-y=3\\x^3-y^3=9\end{cases}}\)
c,\(\hept{\begin{cases}x-y=\left(\sqrt{y}-\sqrt{x}\right)\left(xy+1\right)\\x^3+y^3=54\end{cases}}\)
Em học lớp 4 thôi nên ko hiểu gì đâu ạ
\(\hept{\begin{cases}x-y=3\\\left(x-y\right).\left(x^2+xy+y^2\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=3\\x^2+xy+y^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=x-3\\x^2+x.\left(x-3\right)+\left(x-3\right)^2=3\left(I\right)\end{cases}}}\)
Phương trình (I) tương đương: \(x^2+x^2-3x+x^2-6x+9=3\Leftrightarrow3x^2-9x+6=0\Rightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-2\\y=-1\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(1,-2\right),\left(2,-1\right)\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^3\left(y^2+3y+3\right)=3y^2\\y^3\left(z^2+3z+3\right)=3z^2\\z^3\left(x^2+3x+3\right)=3x^2\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3-3y^2+3y=1\\y^3-3z^2+3z=1\\z^3-3x^2+3x=1\end{matrix}\right.\)
\(x^3=3y^2-3y+1=3\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)
\(\Rightarrow x\ge\dfrac{1}{\sqrt[3]{4}}>\dfrac{1}{2}\)
Tương tự ta có \(y;z>\dfrac{1}{2}\)
\(\Rightarrow x+y-1>0;y+z-1>0;z+x-1>0\)
TH1: \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow3y^2-3y+1\ge3z^2-3z+1\)
\(\Rightarrow y^2-z^2-y+z\ge0\Rightarrow\left(y-z\right)\left(y+z+1\right)\ge0\)
\(\Rightarrow y-z\ge0\Rightarrow y\ge z\Rightarrow x\ge z\) (1)
Cũng do \(y\ge z\Rightarrow y^3\ge z^3\)
\(\Rightarrow3z^2-3z+1\ge3x^2-3x+1\Rightarrow z^2-x^2-z+x\ge0\)
\(\Rightarrow\left(z-x\right)\left(z+x+1\right)\ge0\Rightarrow z\ge x\) (2)
Từ (1);(2) \(\Rightarrow x=y=z\)
TH2: \(x\le y\), hoàn toàn tương tự ta cũng chứng minh được \(x=y=z\)
Thay vào hệ ban đầu:
\(\left\{{}\begin{matrix}x^3-3x^2+3x=1\\y^3-3y^2+3y=1\\z^3-3z^2+3z=1\end{matrix}\right.\) \(\Rightarrow x=y=z=1\)
Giải hệ phương trình sau
\(\left\{{}\begin{matrix}x^3\left(y^2+3y+3\right)=3y^2\\y^3\left(z^2+3z+3\right)=3z^2\\z^3\left(x^2+3x+3\right)=3x^2\end{matrix}\right.\)
TÌM NGHIỆM NGUYÊN CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}xy=x+y+z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
TÌM NGHIỆM NGUYÊN DƯƠNG CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x, y, z nhỏ nhất)
2,\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x, y, z nhỏ nhất)
3, \(\hept{\begin{cases}z+y=x+10\\yz=10x+1\end{cases}}\)
4, \(\hept{\begin{cases}x+y+z=100\\5x+3y+\frac{z}{3}=100\end{cases}}\)
GIẢI PHƯƠNG TRÌNH
1, \(x^2-2x=2\sqrt{2x-1}\)
2,\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
MỌI NGƯỜI GIẢI GIÚP MÌNH VỚI
ko bít sorry nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Giải hệ phương trình:\(\hept{\begin{cases}x+y+z=0\\2x+3y+z=0\\\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^3=26\end{cases}.}\)
\(\hept{\begin{cases}x+y+z=0\left(1\right)\\2x+3y+z=0\left(2\right)\\\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^3=26\left(3\right)\end{cases}}\)
Từ (1), (2) suy ra:
\(\hept{\begin{cases}x=-2y\\z=y\end{cases}}\)
Thê vô (3) ta được:
\(\left(-2y+1\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)
\(\Leftrightarrow y^3+14y^2+27y+6=0\)
\(\Leftrightarrow\left(y+2\right)\left(y^2+12y+3\right)=0\)
th1 y=z=-2
x=4
th2 y=z=-6+ căn 33
x=12-căn 33