Giải hệ phương trình sau bằng phương pháp thế
1) \(\left\{{}\begin{matrix}x-2y=4\\-2x+5y=-3\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x+2y=4\\-3x+y=7\end{matrix}\right.\)
Bài 2: Giải các hệ phương trình sau bằng phương pháp thế
a) \(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}5x-4y=3\\2x+y=4\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}3x-y=5\\5x+2y=28\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x-2y=1\\2x-y=4\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}4\left(2x-y+3\right)-3\left(x-2y+3\right)=48\\3\left(3x-4y+3\right)+4\left(4x-2y-9\right)=48\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-2\left(2x+1\right)+1,5=3\left(y-2\right)-6x\\11,5-4\left(3-x\right)=2y-\left(5-x\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{8x-5y-3}{7}+\dfrac{11y-4x-7}{5}=12\\\dfrac{9x+4y-13}{5}-\dfrac{3\left(x-2\right)}{4}=15\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\sqrt{3}x-\sqrt{5}y=2\sqrt{6}-\sqrt{15}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
1.Giải hệ phương trình:
a.\(\left\{{}\begin{matrix}2\sqrt{2}x+y=2\sqrt{2}\\7x-3y=7\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}7x+y=-\frac{1}{7}\\-\frac{4}{3}x-2y=1\frac{1}{3}\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2\sqrt{5}x+3y=\sqrt{2}\\\sqrt{5}x-y=3\sqrt{2}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y}=-5\\\frac{3}{x}-\frac{4}{y}=1\end{matrix}\right.\)
e.\(\left\{{}\begin{matrix}-\frac{5}{3x+1}+\frac{7}{2x+1}=\frac{5}{7}\\\frac{1}{3x+1}-\frac{1}{2y-3}=\frac{2}{7}\\\end{matrix}\right.\)
g.\(\left\{{}\begin{matrix}2x^2+5y^2=129\\-3x^2+y^2=13\end{matrix}\right.\)
Giải hệ phương trình sau bằng phương pháp thế
a)
\(\left\{{}\begin{matrix}\sqrt{5}+2)x+y=3-\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\)
b)
\(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\)
Giải các hệ phương trình sau bằng phương pháp thế:
a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.;\)
b) \(\left\{{}\begin{matrix}7x-3y=5\\4x+y=2\end{matrix}\right.;\)
c) \(\left\{{}\begin{matrix}x+3y=-2\\5x-4y=11\end{matrix}\right..\)
Giải các hệ phương trình sau bằng phương pháp thế :
a) \(\left\{{}\begin{matrix}4x+5y=3\\x-3y=5\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}7x-2y=1\\3x+y=6\end{matrix}\right.\);
c) \(\left\{{}\begin{matrix}1,3x+4,2y=12\\0,5x+2,5y=5,5\end{matrix}\right.\);
d) \(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\).
giải các hệ phương trình sau:
\(\left\{{}\begin{matrix}2x+\dfrac{Y}{\sqrt{4X^{2^{ }}+1}+2X}+Y^{2^{ }}=0\\4\left(\dfrac{X}{Y}\right)^{2^{ }}+2\sqrt{4X^{2^{ }}+1}+Y^{2^{ }}=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+z=6\\xy+yz+zx=11\\xyz=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^{3^{ }}-y^{3^{ }}-15y-14=3\left(2y^{2^{ }}-x\right)\\4x^{3^{ }}+6xy+15x+3=0\end{matrix}\right.\)
Giải các hệ phương trình sau bằng phương pháp thế:
a) \(\left\{{}\begin{matrix}x+y\sqrt{5}=0\\x\sqrt{5}+3y=1-\sqrt{5}\end{matrix}\right.;\)
b) \(\left\{{}\begin{matrix}\left(2-\sqrt{3}\right)x-3y=2+5\sqrt{3}\\4x+y=4-2\sqrt{3}\end{matrix}\right..\)