[(x-109)/1009]/[(x-4)/1007]+[(x-2002)/1005]=7
Ta có: \(\dfrac{x+1006}{1007}+\dfrac{x+1005}{1008}=\dfrac{x+1004}{1009}+\dfrac{x+1003}{1010}\)
\(\Leftrightarrow\dfrac{x+1006}{1007}+1+\dfrac{x+1005}{1008}+1=\dfrac{x+1004}{1009}+1+\dfrac{x+1003}{1010}+1\)
\(\Leftrightarrow\dfrac{x+2013}{1007}+\dfrac{x+2013}{1008}=\dfrac{x+2013}{1009}+\dfrac{x+2013}{1010}\)
\(\Leftrightarrow\dfrac{x+2013}{1007}+\dfrac{x+2013}{1008}-\dfrac{x+2013}{1009}-\dfrac{x+2013}{1010}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{1}{1009}-\dfrac{1}{1010}\right)=0\)
mà \(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{1}{1009}-\dfrac{1}{1010}\ne0\)
nên x+2013=0
hay x=-2013
Vậy: S={-2013}
tim x
a. x-10/2010 + x-3/2003 + x-2/2002 =-3
b. x-1009/1001 + x-4/1003 + x+10/1005 =7
a)\(\frac{x-10}{2010}\)+ \(\frac{x-3}{2003}\)+\(\frac{x-2}{2002}\)= -3
=> \(\frac{x-10}{2010}\)+1+ \(\frac{x-3}{2003}\)+ 1+\(\frac{x-2}{2002}\)+1= -3 +1 + 1 + 1
=> \(\frac{x-10+2010}{2010}\)+ \(\frac{x-3+2003}{2003}\)+\(\frac{x-2+2002}{2002}\)= 0
=>\(\frac{x+2000}{2010}\)+ \(\frac{x+2000}{2003}\)+\(\frac{x+2000}{2002}\)= 0
=>(x + 2000)(\(\frac{1}{2010}\)+ \(\frac{1}{2003}\)+\(\frac{1}{2002}\)) = 0
=> x + 2000 = 0
hoặc
=>\(\frac{1}{2010}\)+ \(\frac{1}{2003}\)+\(\frac{1}{2002}\)= 0
Mà : \(\frac{1}{2010}\)> 0
\(\frac{1}{2003}\)> 0
\(\frac{1}{2002}\)> 0
Cộng vế theo vế của các bất đẳng thức trên , ta có:
\(\frac{1}{2010}\)+\(\frac{1}{2003}\)+\(\frac{1}{2002}\)>0
=> x + 2000 = 0
=> x = 0 -2000 = -2000
Vậy x = -2000
Nhường các bạn câu 2 :(
Sắp xếp từ bé đến lớn các số sau : \(\frac{1005}{2002};\frac{1007}{2006};\frac{1009}{2010};\frac{1011}{2014}\)
Đáp án là :
\(\frac{1005}{2002}< \frac{1011}{2004}< \frac{1009}{2010}< \frac{1007}{2006}\)
hải ơi cậu làm kiểu gì đấy
Giải phương trình:
\(\dfrac{x+1006}{1007}+\dfrac{x+1005}{1008}=\dfrac{x+1004}{1009}+\dfrac{x+1003}{1010}\left(1\right)\)
\(\frac{x+1006}{1007}+\frac{x+1005}{1008}=\frac{x+1004}{1009}+\frac{x+1003}{1010}\)
\(\Rightarrow\left(\frac{x+1006}{1007}+1\right)+\left(\frac{x+1005}{1008}+1\right)=\left(\frac{x+1004}{1009}+1\right)+\left(\frac{x+1003}{1010}+1\right)\)
\(\Rightarrow\frac{x+2013}{1007}+\frac{x+2013}{1008}=\frac{x+2013}{1009}+\frac{x+2013}{1010}\)
\(\Rightarrow\frac{x+2013}{1007}+\frac{x+2013}{1008}-\frac{x+2013}{1009}-\frac{x+2013}{1010}=0\)
\(\Rightarrow\left(x+2013\right)\left(\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1009}-\frac{1}{1010}\right)=0\)
Mà \(\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1009}-\frac{1}{1010}\ne0\)
\(\Rightarrow x+2013=0\)
\(\Rightarrow x=-2013\)
Vậy x = -2013
Sắp xếp từ bé đến lớn các p/s sau : \(\dfrac{1005}{2002};\dfrac{1007}{2006};\dfrac{1009}{2010};\dfrac{1011}{2014}\)
so sánh phân số 4/17 và 16/63 ;
19/53 và 30/73;
1007/1009 và 1005/1007
\(\dfrac{4}{17}=\dfrac{16}{68}\\ Vì:\dfrac{16}{68}< \dfrac{16}{63}\Rightarrow\dfrac{4}{17}< \dfrac{16}{63}\\ ---\\ \dfrac{1007}{1009}=1-\dfrac{2}{1009};\dfrac{1005}{1007}=1-\dfrac{2}{1007}\\ Vì:\dfrac{2}{1009}< \dfrac{2}{1007}\Rightarrow1-\dfrac{2}{1009}>1-\dfrac{2}{1007}\\ \Rightarrow\dfrac{1007}{1009}>\dfrac{1005}{1007}\)
a: 4/17=16/68
16/68<16/63
=>4/17<16/63
b: 19/53<20/53
20/53<20/50(Vì 53>50)
=>19/53<20/50=2/5
mà 2/5=30/75<30/73
nên 19/53<30/73
c: 1007/1009=1-2/1009
1005/1007=1-2/1007
1009>1007
=>2/1009<2/1007
=>-2/1009>-2/1007
=>1007/1009>1005/1007
X-1009/1001+x-4/1003+x+2010/1005=7
\(\frac{x-1009}{1001}\)+\(\frac{x-4}{1003}\)+\(\frac{x+2010}{1005}\)=7
⇔\(\frac{x-1009}{1001}\)+\(\frac{x-4}{1003}\)+\(\frac{x+2010}{1005}\)-7=0
⇔\(\left(\frac{x-1009}{1001}-1\right)+\left(\frac{x-4}{1003}-2\right)+\left(\frac{x+2010}{1005}-4\right)=0\)
⇔\(\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
⇔(x-2010)\(\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)\)=0
⇔x-2010=0
⇔x=2010
Vậy x=2010
\(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
⇔ \(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}-7=0\)
⇔\(\left(\frac{x-1009}{1001}-1\right)+\left(\frac{x-4}{1003}-2\right)\)\(+\left(\frac{x+2010}{1005}-4\right)=0\)
⇔\(\frac{x-1009-1001}{1001}+\frac{x-4-2006}{1003}+\)\(\frac{x+2010-4020}{1005}=0\)
⇔\(\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
⇔\(\left(x-2010\right)\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)=0\)
⇔ \(x-2010=0\left(do\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}>0\right)\)
⇔ \(x=2010\)
Vậy S = {2010}
so sánh
\(\frac{1005}{2002}\); \(\frac{1007}{2006}\); \(\frac{1009}{2010}\)
1005/2002 >1009/2010 >1007/2006
k mk nha mk đang bị âm điẻm
\(\frac{1009}{2010}\) < \(\frac{1007}{2006}\) < \(\frac{1005}{2002}\)
Bạn lấy tử rồi chia cho mẫu là ra
so sánh
\(\frac{1005}{2002}\); \(\frac{1007}{2006}\) ; \(\frac{1009}{2010}\)
mẫu số nào lớn nhất thi số đó lớn nhất nha b 2010 > 2006 > 2002. mình nghĩ như v