Cho a,b thòa mãn a\(\ge3\), ab\(\ge6\). Tìm GTNN của M=a2+b2
a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
cho a,b,c là 3 số dương thỏa mãn: a+b+c=2019. Tìm GTNN : a3/a2+b2+ab + b3/b2+c2+bc + c3/c2+a2+ca
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
cho các số a,b,c thỏa mãn a2+b2+c2=2023, tìm GTNN của P=ab+2bc+ca
Đề là tìm GTNN hay GTLN hả bạn?
cho a,b,c ϵ R thỏa mãn a≥1; b≥1; 0≤c≤1 và a+b+c=3. Tìm GTLN và GTNN của P = (a2+b2+c2)/ab+bc+ca
\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)
\(P_{min}=1\) khi \(a=b=c=1\)
\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)
Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)
\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)
\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)
\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)
Cho a,b \(\ge\)0 thỏa mãn a2+b2=1. Tìm GTNN và GTLN của A = a3+ b3
Mk ms tìm được GTNN thôi!
Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)
Áp dụng BĐT Cô-si cho 2 số ko âm a2 và b2 ta có:
a2 + b2 \(\ge\) 2ab
\(\Leftrightarrow\) 1 \(\ge\) 2ab
\(\Leftrightarrow\) 1 - 2ab \(\ge\) 0
\(\Leftrightarrow\) 1 - ab \(\ge\) ab
\(\Rightarrow\) A \(\ge\) ab(a + b)
Dấu "=" xảy ra khi và chỉ khi a = b = \(\sqrt{0,5}\)
\(\Rightarrow\) A \(\ge\) 0,5 . 2\(\sqrt{0,5}\) = \(\sqrt{0,5}\)
Vậy ...
Chúc bn học tốt!
\(a^2+b^2=1\Rightarrow\left\{{}\begin{matrix}0\le a\le1\\0\le b\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3\le a^2\\b^3\le b^2\end{matrix}\right.\)
\(\Rightarrow a^3+b^3\le a^2+b^2=1\)
\(A_{max}=1\) khi \(\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)
\(a^3+a^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}a^2\)
\(b^3+b^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}b^2\)
Cộng vế:
\(2\left(a^3+b^3\right)+\dfrac{\sqrt{2}}{2}\ge\dfrac{3}{\sqrt{2}}\left(a^2+b^2\right)=\dfrac{3\sqrt{2}}{2}\)
\(\Rightarrow a^3+b^3\ge\dfrac{\sqrt{2}}{2}\)
\(A_{min}=\dfrac{\sqrt{2}}{2}\) khi \(a=b=\dfrac{\sqrt{2}}{2}\)
Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)
Áp dụng BĐT Cô-si cho 2 số (a + b)2 và 1 ko âm ta có:
\(\dfrac{\left(a+b\right)^2+1}{2}\ge a+b\)
\(\Leftrightarrow\) \(\dfrac{a^2+b^2+2ab+1}{2}\ge a+b\)
\(\Leftrightarrow\) \(\dfrac{2+2ab}{2}\ge a+b\)
\(\Leftrightarrow\) 1 + ab \(\ge\) a + b
\(\Leftrightarrow\) (1 - ab)(1 + ab) \(\ge\) A
\(\Leftrightarrow\) 1 - a2b2 \(\ge\) A
Dấu "=" xảy ra \(\Leftrightarrow\) ab = 1; a2 + b2 = 1
Khi đó: A \(\le\) 0
Vậy ...
Chúc bn học tốt!
Cho a và b là 2 số dương thỏa mãn a\(\ge3\) ; ab\(\ge6\). Tìm giá trị nhỏ nhất của
S=\(a^2+b^2\)
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{4}{9}a^2+b^2\geq \frac{4}{3}ab\geq \frac{4}{3}.6=8$
$\frac{5}{9}a^2\geq \frac{5}{9}.3^2=5$
Cộng theo vế:
$S\geq 8+5=13$
Vậy $S_{\min}=13$ khi $(a,b)=(3,2)$
cho -2 ≤ a, b, c ≤ 3 và a2 + b2 + c2 = 22. Tìm GTNN của M = a + b + c
\(\left(a+2\right)\left(a-3\right)\le0\)\(\Leftrightarrow a^2-6\le a\)
Tương tự: \(b^2-6\le b\) ; \(c^2-6\le c\)
Cộng vế với vế:
\(M\ge a^2+b^2+c^2-18=4\)
Dấu '=" xảy ra khi \(\left(a;b;c\right)=\left(3;3-2\right)\) và hoán vị
cho a,b,c≥1 và ab+bc+ca=9. tìm GTLN và GTNN của P=a2+b2+c2
Lời giải:
Tìm min:
Theo BĐT AM-GM thì: $P=a^2+b^2+c^2\geq ab+bc+ac$ hay $P\geq 9$
Vậy $P_{\min}=9$. Giá trị này đạt tại $a=b=c=\sqrt{3}$
-----------
Tìm max:
$P=a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=(a+b+c)^2-18$
Vì $a,b,c\geq 1$ nên:
$(a-1)(b-1)\geq 0\Leftrightarrow ab+1\geq a+b$
Hoàn toàn tương tự: $bc+1\geq b+c; ac+1\geq a+c$
Cộng lại: $2(a+b+c)\leq ab+bc+ac+3=12$
$\Rightarrow a+b+c\leq 6$
$\Rightarrow P=(a+b+c)^2-18\leq 6^2-18=18$
Vậy $P_{\max}=18$. Giá trị này đạt tại $(a,b,c)=(1,1,4)$ và hoán vị
Cho 3 số thực dương a,b,c thoả mãn: a2+b2+c2=1 .Chứng minh:
\(\dfrac{a^5+b^5}{ab\left(a+b\right)}+\dfrac{b^5+c^5}{bc\left(b+c\right)}+\dfrac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)
Ta chứng minh BĐT sau cho các số dương:
\(x^5+y^5\ge xy\left(x^3+y^3\right)\)
\(\Leftrightarrow x^5-x^4y+y^5-xy^4\ge0\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)
Áp dụng:
\(\dfrac{a^5+b^5}{ab\left(a+b\right)}\ge\dfrac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\dfrac{a^3+b^3}{a+b}=a^2-ab+b^2\)
Tương tự và cộng lại:
\(VT\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)=2-\left(ab+ca+ca\right)\)
\(VT\ge4-\left(ab+bc+ca\right)-2=4\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\)
\(VT\ge4\left(ab+bc+ca\right)-\left(ab+bc+ca\right)-2=3\left(ab+bc+ca\right)-2\) (đpcm)