Lời giải:
Áp dụng BĐT Cô-si:
$\frac{4}{9}a^2+b^2\geq \frac{4}{3}ab\geq \frac{4}{3}.6=8$
$\frac{5}{9}a^2\geq \frac{5}{9}.3^2=5$
Cộng theo vế:
$S\geq 8+5=13$
Vậy $S_{\min}=13$ khi $(a,b)=(3,2)$
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{4}{9}a^2+b^2\geq \frac{4}{3}ab\geq \frac{4}{3}.6=8$
$\frac{5}{9}a^2\geq \frac{5}{9}.3^2=5$
Cộng theo vế:
$S\geq 8+5=13$
Vậy $S_{\min}=13$ khi $(a,b)=(3,2)$
Cho a, b, c là các số dương thỏa mãn \(a+b+c\ge3\) .
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\)
cho a,b,c là các số thực dương thoả mãn \(ab+bc+ca\ge3\) tìm giá trị nhỏ nhất của biểu thức A= \(\dfrac{a^2+b^2+c^2}{\sqrt{a+2016}+\sqrt{b+2016}+\sqrt{c+2016}}\)
Cho a,b,c là các số thực dương thỏa mãn a+b=1 . Tìm giá trị nhỏ nhất của (2/ab) + (1/a^2+b^2) +(a^4+b^4/2)
Cho a, b là 2 số thực dương thỏa mãn a + b = ab. Tìm giá trị nhỏ nhất của biểu thức P = 1 a 2 + 2 a + 1 b 2 + 2 b + 1 + a 2 1 + b 2
cho 2 số dương a và b thỏa mãn ab = 1. tìm giá trị nhỏ nhất của:
\(B=\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\)
Cho a,b là các số dương thỏa mãn : a^2 + b^2 = a + b . Tìm giá trị nhỏ nhất của P = a^4 + b^4 + 2020/(a+b)^2
Cho a, b là các số dương thỏa mãn ab = 4. Tìm giá trị nhỏ nhất của biểu thức sau:
\(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)
cho các số dương a,b,c thỏa mãn abc =1 . Tìm giá trị nhỏ nhất P = a + b + c - 2 . căn( 1 + ab + bc +ca)
1.Cho 3 số thực dương a,b,c Tìm giá trị nhỏ nhất của
\(\dfrac{1}{\sqrt{ab}+2\sqrt{bc}+2\left(a+c\right)}-\dfrac{2}{5\sqrt{a+b+c}}\)
2.Cho 3 sô thực dương thỏa mãn 6a+3b+2a=abc
Tìm giá trị lớn nhất của Q = \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)