10-2.(4-3x)=-4
b ) [( 6x - 39) : 7] .4 = 12 c) 4( 3x - 4 ) - 2 = 18 d ) ( 3x - 10 ) :10 = 50
e) x- 7 = - 57 f ) x - [ 42 + (-25) = - 8 g) ( 3x - 24 ) . 73 = 2 . 74
h) x + 5 = 20 - ( 12 -7) k) I x - 5 I = 7 - ( -3) i) I x - 5 I = I 7 I
2x+1 . 22009 = 220010 10 - 2x = 25 - 3x
nik lộn
2x+1. 22009 = 22010
10 - 2x = 25 - 3x
-3/4 + -1/4 + 2/7 + 5/7 + 2023/2024
2/3x = 2/7
2/3x - 1/2 = 1/10
a: =-3/4-1/4+2/7+5/7+2023/2024
=-1+1+2023/2024=2023/2024
b: 2/3x=2/7
=>x=2/7:2/3=3/7
c; =>2/3x=1/10+1/2=1/10+5/10=6/10=3/5
=>x=3/5:2/3=3/5*3/2=9/10
4 * ( x + 10 ) +5 = 2 * ( 3x + 10 - 2
5 * (x-2) -3 = 2* (x-1)+9
5x*(x-3)-2*(3-x)=0
2x*(3x-3)+4=3x(2x+1)-1
(x-4)(x+1)-x2 +1=0
(3x-2)2 - (x+5)2 =0
4*(x+1)=3+2x
a, (x+10/4x-8) . (4-2x/x+2)
b, (1-4x^2/x^2+4x) : (2-4x/3x)
c, ( 4y^2/7x^4) : (-8y/35x^2)
d, (x^2-4/3x+12) . (x+4/2x-4)
a: \(\dfrac{x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{x+10}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-\left(x+10\right)}{2\left(x+2\right)}\)
b: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)
\(=\dfrac{\left(2x-1\right)\left(2x+1\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(x-2\right)}\)
\(=\dfrac{3\left(2x-1\right)\left(2x+1\right)}{2\left(x-2\right)\left(x+4\right)}\)
c: \(=\dfrac{4y^2}{7x^4}\cdot\dfrac{35x^2}{-8y}=\dfrac{5}{x^2}\cdot\dfrac{-1}{2}\cdot y=\dfrac{-5y}{2x^2}\)
d: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)
Tìm x :
a) (x + 3)2 + ( 4 + x).(4 - x) = 10
b) 9.(x+1)2 - (3x-2).(3x+2) = 10
a) (x+3)² + (4+x)(4-x) = 10
x² + 6x + 9 + 16- x² = 10
6x + 25 = 10
6x = -15
x = -15/6
b) 9(x+1)² - (3x-2)(3x+2) = 10
9x² + 18x + 9 - 9x² + 4 =10
18x + 13 = 10
18x = -3
x = -1/6
a) ( x + 3 )2 + ( 4 + x )( 4 - x ) = 10
⇔ x2 + 6x + 9 + 16 - x2 = 10
⇔ 6x + 25 = 10
⇔ 6x = -15
⇔ x = -15/6 = -5/2
b) 9( x + 1 )2 - ( 3x - 2 )( 3x + 2 ) = 10
⇔ 9( x2 + 2x + 1 ) - ( 9x2 - 4 ) = 10
⇔ 9x2 + 18x + 9 - 9x2 + 4 = 10
⇔ 18x + 13 = 10
⇔ 18x = -3
⇔ x = -3/18 = -1/6
a) \(\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=10\)
\(x^2+6x+9+16-x^2=10\)
\(6x+25=10\)
\(6x=-15\)
\(x=-\frac{5}{2}\)
b) \(9.\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(9.\left(x^2+2x+1\right)-9x^2+4=10\)
\(9x^2+18x+9-9x^2+4=10\)
\(18x+13=10\)
\(18x=-3\)
\(x=-\frac{1}{6}\)
c) 4( 3x - 4 ) - 2 = 18
d ) ( 3x - 10 ) :10 = 50
f ) x - [ 42 + (-25) = - 8
g) ( 3x - 24 ) . 73 = 2 . 74
h) x + 5 = 20 - ( 12 -7)
k) I x - 5 I = 7 - ( -3)
i) I x - 5 I = I 7 I
2x+1 . 22009 = 22010
10 - 2x = 25 - 3x
c)
\(4\left(3x-4\right)-2=18\)
<=> \(12x-16-2=18\)
<=> \(12x=36\)
<=> \(x=3\)
Vậy x=3
d)
\(\left(3x-10\right):10=50\)
<=> \(3x-10=500\)
<=> \(3x=510\)
<=> x= \(170\)
Vậy x= 170
f)
\(x-\left[42+\left(-25\right)\right]=-8\)
<=> \(x-17=-8\)
<=> x= \(9\)
Vậy x=9
h)
\(x+5=20-\left(12-7\right)\)
<=> \(x+5=15\)
<=> \(x=10\)
Vậy x= 10
k)
\(\left|x-5\right|=7-\left(-3\right)\)
<=> \(\left|x-5\right|=10\)
* Với \(x>=5\) ; ta được:
\(x-5=10\)
<=> x= 15 (thoả mãn điều kiện )
*Với \(x< 5\) ; ta được:
\(-\left(x-5\right)=10\)
<=> \(-x+5=10\)
<=> \(-x=5\)
<=> \(x=-5\) (thoả mãn điều kiện)
Vậy x=15 ; x= -5
i)
\(\left|x-5\right|=\left|7\right|\)
<=> \(\left|x-5\right|=7\)
*Với \(x>=5\) ; ta được:
\(x-5=7\)
<=> \(x=12\) (thoả mãn)
*Với \(x< 5\) ; ta được:
\(-\left(x-5\right)=7\)
<=> \(-x=2\)
<=> \(x=-2\) (thoả mãn)
Vậy x= 12; x= -2
m)
\(2^{x+1}.2^{2009}=2^{2010}\)
<=> \(2^{x+1+2009}=2^{2010}\)
<=> \(2^{x+2010}=2^{2010}\)
=> \(x+2010=2010\)
=> \(x=0\)
Vậy x=0
n)
\(10-2x=25-3x\)
<=>\(x=15\)
Vậy x=15
1).(4-3x)(10-5x)=0 2).(7-2x)(4+8x)=0 3).(9-7x)(11-3x)=0
4).(7-14x)(x-2)=0 5).(\(\dfrac{7}{8}\)-2x)(3x+\(\dfrac{1}{3}\))=0 6).3x-2x\(^2\)
7).5x+10x\(^2\)
1.
<=> \(\left[{}\begin{matrix}4-3x=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)
2.
<=>\(\left[{}\begin{matrix}7-2x=0\\4+8x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
3.
<=>\(\left[{}\begin{matrix}9-7x=0\\11-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{7}\\x=\dfrac{11}{3}\end{matrix}\right.\)
4.
<=>\(\left[{}\begin{matrix}7-14x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
5.
<=>\(\left[{}\begin{matrix}\dfrac{7}{8}-2x=0\\3x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{16}\\x=-\dfrac{1}{9}\end{matrix}\right.\)
6,7. ko đủ điều kiện tìm
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
10-2(4-3x)= -4
10-2(4-3x) = -4
=> 2(4-3x) = 10-(-4)
=> 2(4-3x) = 14
=> 4-3x = 14:2
=> 4-3x = 7
=> 3x = 4-7
=> 3x = -3
=> x = -1
Vậy x = -1
Chúc bạn học tốt !
\(10-2\left(4-3x\right)=-4\)
\(10-2\left(4-3x\right)=2\left(3x+1\right)\)
\(2\left(3x+1\right)=-2^2\)
\(6x+2=-4\)
\(6x=-6\)
\(\Rightarrow x=-1\)