Nhặt được bài khá hay :)
Tìm các số nguyên tố a;b;c;d;e, biết : a-b=b-c=c-d=d-e=6
Bài 1:Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố.
Bài 2. Cho p và 2p + 1 là các số nguyên tố ( p > 3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 3:
a) Tìm số nguyên tố p,sao cho p + 4 và p + 8 cũng là các số nguyên tố.
b) Tìm số nguyên tố p, sao cho p + 6, p + 8, p + 12, p + 14 cũng là các số nguyên tố.
Bài 4: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 5: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 3:
a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố
p + 8 = 2 + 8 = 10 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố
p + 8 = 3 + 8 = 11 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố
p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p > 3 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất
bài 9:Tìm số nguyên tố p sao cho:
a)p+16;p+38 cũng là các số nguyên tố
b)p+28;p+44 cũng là các số nguyên tố
c)p+26;p+42;p+48'p+74 là các số nguyên tố
bài 10:a)tổng 3 số tự nhiên liên tiếp là số nguyên tố hay hợp số?
b)tổng 3 số tự nhiên lẻ liên tiếp là số nguyên tố hay hợp số?
9 Tìm số nguyên tố p sao cho :
a) Nếu p = 2
=> p + 16 = 2 + 16 = 18 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 16 = 3 + 16 = 19 (số ngyên tố)
=> p + 38 = 3 + 38 = 41 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 38 = 3k + 1 + 38 = 3k + 39 = 3(k + 13) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
b) Nếu p = 2
=> p + 28 = 2 + 28 = 30 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 28 = 3 + 28 = 31 (số ngyên tố)
=> p + 44 = 3 + 44 = 47 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 44 = 3k + 1 + 44 = 3k + 45 = 3(k + 15) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 28 = 3k + 2 + 28 = 3k + 30 = 3(k + 10) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
c) Nếu p = 2
=> p + 26 = 2 + 26 = 28 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 42 = 3 + 42 = 45 (hợp số)
=> p = 3 (loại)
Nếu p = 5
=> p + 26 = 5 + 26 = 31 (số nguyên tố)
=> p + 42 = 5 + 42 = 47 (số nguyên tố)
=> p + 48 = 5 + 48 = 53 (số nguyên tố)
=> p + 74 = 5 + 74 = 79 (số nguyên tố)
=> p = 5 (chọn)
Nếu p > 5
=> p = 5k + 1 hoặc p = 5k + 2 hoặc p = 5k + 3 hoặc p = 5k + 4 (\(k\inℕ^∗\))
Nếu p = 5k + 1
=> p + 74 = 5k + 1 + 74 = 5k + 75 = 5(k + 15) \(⋮\)5
=> p + 74 là hợp số
=> p = 5k + 1 (loại)
Nếu p = 5k + 2
=> p + 48 = 5k + 2 + 48 = 5k + 50 = 5(k + 10) \(⋮\)5
=> p + 48 là hợp số
=> p = 5k + 2 (loại)
Nếu p = 5k + 3
=> p + 42 = 5k + 3 + 42 = 5k + 45 = 5(k + 9) \(⋮\)5
=> p + 42 là hợp số
=> p = 5k + 3 (loại)
Nếu p = 5k + 4
=> p + 26 = 5k + 4 + 26 = 5k + 30 = 5(k + 6) \(⋮\)5
=> p + 26 là hợp số
=> p = 5k + 4 (loại)
Vậy p = 5
10) a) Gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2
Ta có : a + a + 1 + a + 2 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên liên tiếp là hợp số
b) Gọi 3 số tự nhiên lẻ liên tiếp là : a ; a + 2 ; a + 4
=> Ta có : a + a + 2 + a + 4 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên lẻ liên tiếp là hợp số
Bài1:Các số sau là nguyên tố hay hợp số
a) 123456789 + 729
b) 5.7.8.9.11-132
Bài 2: Tìm số nguyên tố sao cho
a)P+2 và P+4 cũng là số nguyên tố
b)P+10 và P+14 cũng là số nguyên tố
Bài 1 :
a) \(123456789+729=\text{123457518}⋮2\)
⇒ Số trên là hợp số
b)\(5.7.8.9.11-132=\text{27588}⋮2\)
⇒ Số trên là hợp số
Bài 2 :
a) \(P+2\&P+4\) ;à số nguyên tố
\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)
\(\Rightarrow P=-3\)
Câu b tương tự
a,123456789+729=123457518(hợp số)
b,5x7x8x9x11-132=27588(hợp số)
Bài 2,
a,Nếu P=2=>p+2=4 và p+4=6 (loại)
Nếu P=3=>p+2=5 và p+4=7(t/m)
P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)
Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)
Nếu p=3k+2=>p+4=3k+6⋮3(loại)
Vậy p=3 thỏa mãn đề bài
b,Nếu p=2=>p+10=12 và p+14=16(loại)
Nếu p=3=>p+10=13 và p+14=17(t/m)
Nếu p >3=>p có dạng 3k+1 hoặc 3k+2
Nếu p=3k+1=>p+14=3k+15⋮3(loại)
Nếu p=3k+2=>p+10=3k+12⋮3(loại)
Vậy p=3 thỏa mãn đề bài.
Bài 5:
Tìm số tự nhiên a sao cho: a; a + 1 và a + 2 đều là các số nguyên tố?
Bài 6: Tổng (hiệu) sau là số nguyên tố hay hợp số? a) 5 . 6 . 7 + 8 . 9 ;
b) 5 . 7 . 9 . 11 – 2 . 3 . 7
Bài 7:
Phân tích các số 78; 450 ra thừa số nguyên tố bằng cách “rẽ nhánh” và “theo cột dọc”.
Bài 8:
Biết 2 700 = 22 . 33 . 52. Hãy viết các số 270 và 900 thành tích các thừa số nguyên tố.
Bài 6:
a: Là hợp số
b: Là hợp số
c1
p+1;p+2;p+3p+1;p+2;p+3 là các số tự nhiên liên tiếp
Trong 3 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số chẵn. Mà số nguyên tố chẵn duy nhất là 2 nên để 3 số đó đều là số nguyên tố thì có 1 số bằng 2.
3 số tự nhiên liên tiếp có 1 số bằng 2 là 1;2;31;2;3 hoặc (2;3;4)(2;3;4)
Cả 2 bộ số trên đều không thỏa mãn vì 1 và 4 không là số nguyên tố.
Do đó không có số tự nhiên p nào thỏa mãn yêu cầu bài toán.
c2
a) 5 . 6 . 7 + 8 . 9
ta có :
5 . 6 . 7 chia hết cho 3
8 . 9 chia hết cho 3
=> 5 . 6 . 7 + 8 . 9 chia hết cho 3 và ( 5 . 6 . 7 + 8 . 9 ) > 3 nên là hợp số
b 5 . 7 . 9 . 11 - 2 . 3 . 7
ta có :
5 . 7 . 9 . 11 chia hết cho 7
2 . 3 . 7 chia hết cho 7
=> 5 . 7 . 9 . 11 - 2 . 3 . 7 chia hết cho 7 và ( 5 . 7 . 9 . 11 - 2 . 3 . 7 ) > 7 nên là hợp số
c3
Bài 1: Tìm số nguyên tố có 3 chữ số, biết rằng nếu viết số đó theo thứ tự nguoc lại thì ta được một số là lập phương của một số tự nhiên
Bài 2 : Các số sau là số nguyên tố hay hợp số ?
a, A=123456789 + 729
b, B= 5x7x8x9x11 -132
bài 2 a,hợp số
b,hợp số
tick nhiệt tình nhé
Bài 1: Các số sau là số nguyên tố hay hợp số
a = 1 x 3 x 5 x 7 x ... x 13 + 20
b = 147 x 247 x 347 - 13
c = 13579 + 97531 + 12345
d = 246246 + 122123 + 369369
Bài 2: Tìm số nguyên tố để 5.a + 14 là số nguyên tố < 40
Bài 2:
\(\Leftrightarrow5a+14\in\left\{2;3;5;7;11;13;17;19;23;29;31;37\right\}\)
\(\Leftrightarrow5a\in\left\{5;15\right\}\)
hay a=3(vì a là số nguyên tố)
Bài 4. Phân tích các số sau thành tích các thừa số nguyên tố: 2016; 150; 165; 2020.
Bài 5. Diện tích của một hình chữ nhật là 165 cm2. Tìm tất cả các giá trị chiều dài và chiều rộng có thể có của hcn đó.
Bài 6. A là một số nguyên tố. A + 6, A+ 8, A + 12, A + 14 cũng là số nguyên tố. Tìm A.
Bài 7. Tổng của hai số nguyên tố là 50. tìm tích lớn nhất có thể có của hai số nguyên tố đó.
Bài 8. Tìm số nguyên tố P sao cho P + 2, P + 4 cũng là các số nguyên tố.
Bài 1: tìm 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
Bài 2: cho p lớn hơn hoặc bằng 5 và p;2p+1 đều là các số nguyên tố thì 4p+1 là số nguyên tố hay hợp số ?
bài 1
phân tích các số sau 36,52,134,391,1463 ra thừa số nguyên tố
a) tìm các ước nguyên tố của mỗi số trên
b) tìm các ước nguyên mỗi số
bài 2
a) viết các số chỉ có ước nguyên tố là 7
b) viết bốn số tự nhiên mà mỗi số có đúng ba ước nguyên tố