Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
yenxink
Xem chi tiết
Tô Mì
8 tháng 11 2021 lúc 16:26

\(\hat{A}_1+\hat{B}_1=180^o\Rightarrow a\text{ // }b\left(tcp\right)\)

\(\hat{B}_1=\hat{C}_1\Rightarrow b\text{ // }c\left(đv\right)\)

\(\Rightarrow a\text{ // }b\text{ // }c\left(đpcm\right)\)

Minh Anh
Xem chi tiết
uyên trang
Xem chi tiết
Trần Thị Thanh Thảo
Xem chi tiết
Tứ Diệp Thảo My My
10 tháng 7 2017 lúc 12:28

hình đâu

Lê Ngọc Gia Hân
Xem chi tiết
Rhider
18 tháng 2 2022 lúc 15:35

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

Đỗ Tuệ Lâm
18 tháng 2 2022 lúc 15:38

undefined

Phạm khang
22 tháng 2 2022 lúc 10:05

Cho xin Zalo với

Trần Thị Bích Ngọc
Xem chi tiết
Im Yoona
Xem chi tiết
Đỗ Đức Lợi
Xem chi tiết
fan FA
28 tháng 8 2016 lúc 16:07

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

♥
3 tháng 5 2019 lúc 15:01

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

♥
3 tháng 5 2019 lúc 15:06

sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề

Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Thị Cúc
Xem chi tiết
Nguyễn Tất Đạt
5 tháng 9 2017 lúc 18:19

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c\)(đpcm)

Vũ Duy Quang
5 tháng 9 2017 lúc 18:25

a=b=c suy ra a/c = 1 c=b nen c/b cung bang 1 tuong tu b/a =1 suy ra a=b=c