\(Cho\) : \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với a,b,c,d ≠ 0;c ≠ d,-d
Chứng minh rằng : \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
. Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có: \(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\left(1\right)\)
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{bk-b}{dk-d}=\dfrac{b\left(k-1\right)}{d\left(k-1\right)}=\dfrac{b}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cách giải:
1+1=3
6-6=0
9-9=0
Vậy => 6-6=9-9
(3-3)+(3-3) = 3x3 - 3x3
(1+1)=3
1+1=3
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)(b\(\ne\)0;d\(\ne\)0)
c)\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
d)\(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{c^2}{d^2}\)
d: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{3\cdot\left(dk\right)^2+5\cdot\left(bk\right)^2}{3d^2+5b^2}=k^2\)
\(\dfrac{c^2}{d^2}=\dfrac{\left(dk\right)^2}{d^2}=k^2\)
Do đó: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{c^2}{d^2}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)(b, c, d ≠ 0 , b + d ≠ 0). Chứng minh rằng: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Theo đề bài ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\) ( 1 )
Theo tính chất dãy tỉ số bằng nhau ta có :
\(k=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(k^2=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( 2 )
Mà từ ( 1 ) = > \(k^2=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\) ( 3 )
Từ ( 2 ) , ( 3 )
= > \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( đpcm )
Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng \(\dfrac{3a^2+10b^20-ab}{7a^2+b^2+5ab}=\dfrac{3c^2+10d^2-cd}{7c^2+d^2+5cd}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Sửa: \(\dfrac{3a^2+10b^2-ab}{7a^2+b^2+5ab}=\dfrac{3b^2k^2+10b^2-b^2k}{7b^2k^2+b^2+5b^2k}=\dfrac{b^2\left(3k^2+10-k\right)}{b^2\left(7k^2+1+5k\right)}=\dfrac{3k^2+10-k}{7k^2+1+5k}\left(1\right)\)
\(\dfrac{3c^2+10d^2-cd}{7c^2+d^2+5cd}=\dfrac{3d^2k^2+10d^2-d^2k}{7d^2k^2+d^2+5d^2k}=\dfrac{d^2\left(3k^2+10-k\right)}{d^2\left(7k^2+1+5k\right)}=\dfrac{3k^2+10-k}{7k^2+1+5k}\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowĐpcm\)
Nếu \(b>0,\) \(d>0\) thì từ \(\dfrac{a}{b}< \dfrac{c}{d}\) suy ra được: \(\dfrac{a}{b}< \dfrac{ab+cd}{b^2+d^2}< \dfrac{c}{d}\)
a/b<c/d
mà b>0 và d>0
nên \(\dfrac{a\cdot b}{b\cdot b}< \dfrac{c\cdot d}{d\cdot d}\)
=>ab/b^2<cd/d^2
=>\(\dfrac{ab}{b^2}< \dfrac{ab+cd}{b^2+d^2}< \dfrac{cd}{d^2}=\dfrac{c}{d}\)
=>\(\dfrac{a}{b}< \dfrac{ab+cd}{b^2+d^2}< \dfrac{c}{d}\)
Biết \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với a,b,c,d khác 0. Chứng minh rằng: \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)
ta có \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\Rightarrow ab.\left(c^2+d^2\right)=cd.\left(a^2+b^2\right)\)
suy ra \(ab.\left(c^2+d^2\right)\)=\(abc^2+abd^2=acbc+adbd\) (1)
\(cd\left(a^2+b^2\right)=a^2cd+b^2cd+bcbd\) =acad+bcbd (2)
(1);(2) suy ra acbc+adbd=acad+bcbd
nên bc+ad=bc+ad
suy ra ad=bc nên \(\dfrac{a}{b}=\dfrac{c}{d}\)
biết:\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với a,b,c,d\(\ne\)0. CMR:
\(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
Cho \(\dfrac{a}{b}< \dfrac{c}{d}\)và b, d > 0 . CMR : \(\dfrac{a}{b}< \dfrac{ab+cd}{b^2+d^2}< \dfrac{c}{d}\)