Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dương nguyễn
Xem chi tiết
Nguyễn Đức Trí
22 tháng 8 2023 lúc 12:47

Bài 5 :

a) \(\dfrac{y}{4}=\dfrac{9}{y}\)

\(\Rightarrow y^2=36\left(y\ne0\right)\)

\(\Rightarrow y=\pm6\)

b) \(\dfrac{y+7}{20}=\dfrac{5}{y+7}\left(y\ne-7\right)\)

\(\Rightarrow\left(y+7\right)^2=100=10^2\)

\(\Rightarrow\left[{}\begin{matrix}y+7=10\\y+7=-10\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=3\\y=-17\end{matrix}\right.\)

c) \(\dfrac{4-5y}{3}=\dfrac{y+2}{5}\)

\(\Rightarrow5\left(4-5y\right)=3\left(y+2\right)\)

\(\Rightarrow20-25y=3y+6\)

\(\Rightarrow28y=14\)

\(\Rightarrow y=\dfrac{14}{28}=\dfrac{1}{2}\)

Nguyễn Đức Trí
22 tháng 8 2023 lúc 12:39

Bài 4 :

\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{10}\)

\(\Rightarrow\dfrac{2a}{10}=\dfrac{3b}{21}=\dfrac{4c}{40}=\dfrac{2a+3b-4c}{10+21-40}=\dfrac{81}{-9}=-9\)

\(\Rightarrow\left\{{}\begin{matrix}a=-9.5=-45\\b=-9.7=-63\\c=-9.10=-90\end{matrix}\right.\)

Nguyễn Đức Trí
22 tháng 8 2023 lúc 12:49

Đính chính Bài 4 :

\(...\dfrac{2a+3b-4c}{10+21-40}=\dfrac{-81}{-9}=9\)

\(\Rightarrow\left\{{}\begin{matrix}a=9.4=36\\b=9.7=63\\c=9.10=90\end{matrix}\right.\)

Nguyễn Huy Việt
Xem chi tiết
Trần Nguyễn Hòa An
Xem chi tiết
Nguyễn Thị Thương Hoài
15 tháng 11 2023 lúc 16:08

a, \(\dfrac{a}{b}\)  = \(\dfrac{3}{5}\) ⇒ a = \(\dfrac{3}{5}\)b;  \(\dfrac{b}{c}\) = \(\dfrac{4}{5}\) ⇒ c = b : \(\dfrac{4}{5}\) = \(\dfrac{5}{4}\)b

⇒ a.c =  \(\dfrac{3}{5}\)b. \(\dfrac{5}{4}\)b = \(\dfrac{3}{4}\) ⇒ b2.\(\dfrac{3}{4}\)  = \(\dfrac{3}{4}\) ⇒ b2 = 1 ⇒ \(\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)

⇒ \(\left[{}\begin{matrix}a=\dfrac{3}{5}\\a=-\dfrac{3}{5}\end{matrix}\right.\)\(\left[{}\begin{matrix}c=\dfrac{5}{4}\\c=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy các cặp số a;b;c thỏa mãn đề bài là:

(a; b; c) = (-\(\dfrac{3}{5}\); -1; - \(\dfrac{5}{4}\)) ; (\(\dfrac{3}{5}\); 1; \(\dfrac{5}{4}\))

 

 

 

Nguyễn Thị Thương Hoài
15 tháng 11 2023 lúc 16:30

b, a.(a+b+c) = -12; b.(a+b+c) =18; c.(a+b+c) = 30

     ⇒a.(a+b+c) - b.(a+b+c) + c.(a+b+c) = -12 + 18 + 30

    ⇒ (a +b+c)(a-b+c) = 0

     ⇒ a - b + c = 0 ⇒ a + c  =b

Thay a + c  =  b vào biểu thức: b.(a+b+c) =18 ta có:

            b.(b + b) = 18

             2b.b = 18

              b2 = 18: 2

              b2 = 9 ⇒ \(\left[{}\begin{matrix}b=-3\\b=3\end{matrix}\right.\)

Thay a + c = b vào biểu thức c.(a + b + c) = 30 ta có:

        c.(b+b) = 30 ⇒ 2bc = 30 ⇒ bc = 30: 2 = 15 ⇒ c = \(\dfrac{15}{b}\)

Thay a + c = b vào biểu thức a.(a+b+c) = -12 ta có:

     a.(b + b) = -12 ⇒2ab = -12 ⇒ ab = -12 : 2 = - 6 ⇒ a = - \(\dfrac{6}{b}\)

Lập bảng ta có: 

b -3 3
a = \(-\dfrac{6}{b}\) 2 -2
c = \(\dfrac{15}{b}\) -5 5

Vậy các cặp số a; b; c thỏa mãn đề bài là:

(a; b; c) = (2; -3; -5); (-2; 3; 5)

 

 

 

     

Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2021 lúc 20:00

\(\dfrac{a^5}{b^3+c^2}+\dfrac{b^3+c^2}{4}+\dfrac{a^4}{2}\ge3\sqrt[3]{\dfrac{a^9.\left(b^3+c^2\right)}{8\left(b^3+c^2\right)}}=\dfrac{3a^3}{2}\)

Tương tự và cộng lại:

\(\Rightarrow M-\dfrac{a^4+b^4+c^4}{2}+\dfrac{a^3+b^3+c^3}{4}+\dfrac{a^2+b^2+c^2}{4}\ge\dfrac{3}{2}\left(a^3+b^3+c^3\right)\)

\(\Rightarrow M\ge\dfrac{a^4+b^4+c^4}{2}+\dfrac{5}{4}\left(a^3+b^3+c^3\right)-\dfrac{3}{4}\)

Mặt khác ta có:

\(\dfrac{1}{2}\left(a^4+b^4+c^4\right)\ge\dfrac{1}{6}\left(a^2+b^2+c^2\right)^2=\dfrac{3}{2}\)

\(\left(a^3+a^3+1\right)+\left(b^3+b^3+1\right)+\left(c^3+c^3+1\right)\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge9\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{15}{4}-\dfrac{3}{4}=...\)

Nguyễn Hải Băng
Xem chi tiết
Nguyễn Huy Tú
17 tháng 8 2016 lúc 21:42

2.Giải:

Theo bài ra ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

+) \(\frac{a}{2}=-3\Rightarrow a=-6\)

+) \(\frac{b}{3}=-3\Rightarrow b=-9\)

+) \(\frac{c}{4}=-3\Rightarrow c=-12\)

+) \(\frac{d}{5}=-3\Rightarrow d=-15\)

Vậy a = -6

        b = -9

        c = -12

        d = -15

Lightning Farron
17 tháng 8 2016 lúc 21:47

Bài 3:

Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)\(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tc dãy tỉ:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)

Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)

Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)

Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)

 

Lightning Farron
17 tháng 8 2016 lúc 21:41

Bài 2:

a : b : c : d = 2 : 3 : 4 : 5 \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)

Áp dụng tc dãy tỉ:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

Với \(\frac{a}{2}=-3\Rightarrow a=-6\)

Với \(\frac{b}{3}=-6\Rightarrow b=-18\)

Với \(\frac{c}{4}=-6\Rightarrow c=-24\)

Với \(\frac{d}{5}=-6\Rightarrow d=-30\)

ỵyjfdfj
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 10 2021 lúc 0:21

a: \(\left(abc\right)^2=\dfrac{3}{5}\cdot\dfrac{4}{5}\cdot\dfrac{3}{4}=\dfrac{9}{25}\)

Trường hợp 1: \(abc=\dfrac{3}{5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=\dfrac{3}{5}:\dfrac{3}{4}=\dfrac{4}{5}\\a=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\end{matrix}\right.\)

Trường hợp 2: \(abc=\dfrac{-3}{5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\b=\dfrac{3}{5}:\dfrac{-3}{4}=\dfrac{-4}{5}\\a=\dfrac{3}{5}:\dfrac{-4}{5}=\dfrac{-3}{4}\end{matrix}\right.\)

Đinh Hoàng Huy
Xem chi tiết
Nguyễn Đức Trí
5 tháng 7 2023 lúc 20:03

1) ab=2 (I); bc=3 (II); ca=54 (III)

Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 324 ⇒ abc = ±18

(II) ⇒ a= ±6 ; (I) ⇒ b= ±1/3 ; (II) ⇒ c= ±9

2) ab=5/3 (I); bc=4/5 (II); ca=3/4 (III)

Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 1 ⇒ abc = ±1

(II) ⇒ a= ±5/4 ; (I) ⇒ b= ±4/3 ; (II) ⇒ c= ±3/5

3) a(a+b+c)= -12 (I)

    b(a+b+c)= 18 (II)

    c(a+b+c)= 30 (III)

Lấy (I)+(II)+(III) ⇒ (a+b+c)2 = 36 ⇒ a+b+c = ±6

TH1 : a=6 ⇒ a= -12/6 = -2 ; b= 18/6 = 3 ; c= 30/6 = 5

TH2 : a=-6 ⇒ a= -12/-6 = 2 ; b= 18/-6 = -3 ; c= 30/-6 = -5

 

Nguyễn Thu Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2022 lúc 11:48

Câu 6: Khôg có cau nào đúng

Câu 7: C

Câu 8: B

Câu 9: B

Câu 10: D

Dark_Hole
27 tháng 2 2022 lúc 11:49

6Không có đáp án nào đúng x=11/4

7C

8B

9B

10D

Tuananh Vu
Xem chi tiết
phan thị minh anh
27 tháng 7 2016 lúc 14:33

a. ab=3/5;bc=4/5;ca=3/4

=>(abc)^2=9/25

=>abc=3/5

=> c=1;a=3/4;b=4/5

phan thị minh anh
27 tháng 7 2016 lúc 14:37

b. a(a+b+c)=-12; b(a+b+c)=18; c(a+b+c)=30

=>(a+b+c)^2=36

=>a+b+c=6

=> a=-2;b=3;c=5

Lê Thế Minh
Xem chi tiết

\(Ta có: \frac{{a^5 }}{{b^3 + c^2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }}\mathop \ge \frac{{3a^2 }}{2}\)

\(\Rightarrow \frac{{a^5 }}{{b^3 + c^2 }} \ge \frac{{3a^2 }}{2} - (\frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }} + \frac{{\sqrt {a(b^3 + c^2 )} }}{{2\sqrt 2 }})\)

\(Do đó: \frac{{a^5 }}{{b^3 + c^2 }} \ge \frac{{3a^2 }}{2} - \frac{{\sqrt {2a(b^3 + c^2 )} }}{2}\mathop \ge \frac{{3a^2 }}{2} - \frac{{2a + b^3 + c^2 }}{4}\)

\(CMTT \frac{{b^5 }}{{c^3 + a^2 }}\mathop \ge \frac{{3b^2 }}{2} - \frac{{2b + c^3 + a^2 }}{4}\)\(\frac{{c^5}}{{a^3+b^2}}\mathop \ge \frac{{3c^2 }}{2} - \frac{{2c + a^3 + b^2 }}{4}\)

\(M \ge \frac{{3(a^2 + b^2 + c^2 )}}{2} + a^4 + b^4 + c^4 - \frac{{2(a + b + c) + (a^2 + b^2 + c^2 ) + (a^3 + b^3 + c^3 )}}{4}\)

\(M \ge \frac{9}{2} + a^4 + b^4 + c^4 - \frac{{2(a + b + c) + (a^2 + b^2 + c^2 ) + (a^3 + b^3 + c^3 )}}{4}\)

Áp dụng Bunhiacoopski ta có:

\(\sqrt {(a^4+b^4+c^4 )(a^2+b^2+c^2)}=\sqrt {(a^4 +b^4+ c^4 ).3}\ge a^3+b^3+c^3 \)

\(\sqrt {(a^4 + b^4 + c^4 )(1 + 1 + 1)} = \sqrt {(a^2 + b^2 + c^2 ).3} \ge a^2 + b^2 + c^2 \Leftrightarrow a^4 + b^4 + c^4 \ge 3\)

Ta có: \(3 = a^2 + b^2 + c^2 \ge \frac{{(a + b + c)^2 }}{3} \Leftrightarrow a^2 + b^2 + c^2 \ge a + b + c\) 

\(Đặt t=x^4+y^4+z^4 (t \ge 3) cần CM để trở thành S \ge \frac{{4t - 9 - \sqrt {3t} }}{4}\ge 0\)

\(Ta có: S\ge \frac{{4t - 9 - \sqrt {3t} }}{4} = \frac{{3(t - 3) + \sqrt t (\sqrt t - \sqrt 3 )}}{4} \ge 0 \)
\(Do đó: M\geq \frac{9}{2}\)

Phần đầu mình thiếu nha

\(\frac{a^5}{b^3+c^2}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}\ge\frac{3a^2}{2}\)

=> \(\frac{a^5}{b^3+c^2}\ge\frac{3a^2}{2}-\left(\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}+\frac{\sqrt{a\left(b^3+c^2\right)}}{2\sqrt{2}}\right)\)

Do đó \(\frac{a^5}{b^3+c^2}\ge\frac{3a^2}{2}-\frac{\sqrt{2a\left(b^3+c^2\right)}}{2}\ge\frac{3a^2}{2}-\frac{\left(2a+b^3+b^2\right)}{4}\)

CMTT \(\frac{b^5}{c^3+a^2}\ge\frac{3b^2}{2}-\frac{\left(2b+c^3+a^2\right)}{4},\frac{c^5}{a^3+b^2}\ge\frac{3c^2}{2}-\frac{\left(2c+a^3+b^2\right)}{4}\)

alibaba nguyễn
7 tháng 12 2017 lúc 9:24

Ta có:

\(\dfrac{a^5}{b^3+c^2}+\dfrac{b^3+c^2}{4}+\dfrac{a}{2}\ge\dfrac{3a^2}{2}\)

\(\Rightarrow M\ge\dfrac{3}{2}\left(a^2+b^2+c^2\right)+a^4+b^4+c^4-\dfrac{1}{4}\left(a^2+b^2+c^2+a^3+b^3+c^3\right)-\dfrac{1}{2}\left(a+b+c\right)\)

\(\ge\dfrac{5}{4}\left(a^2+b^2+c^2\right)+\dfrac{4}{3}\left(a^3+b^3+c^3\right)-1-\dfrac{1}{4}\left(a^3+b^3+c^3\right)-\dfrac{1}{4}\left(a^2+b^2+c^2\right)-\dfrac{3}{4}\)

\(=\left(a^2+b^2+c^2\right)+\dfrac{13}{12}\left(a^3+b^3+c^3\right)-\dfrac{7}{4}\)

\(=\dfrac{5}{4}+\dfrac{13}{12}\left(a^3+b^3+c^3\right)\)

\(\ge\dfrac{5}{4}+\dfrac{3}{2}.\dfrac{13}{12}\left(a^2+b^2+c^2-1\right)=\dfrac{9}{2}\)

Dấu = xảy ra khi \(a=b=c=1\)