Từ điểm A nằm ngoài đường tròn (O;R) kẻ hai tiếp tuyến AB, AC với đường tròn.
a, cm tứ giác ABOC nội tiếp
b, Kẻ đường kính CD của (O;R). Cm BD //OA
c, Biết góc BOC=120 độ. Tính diện tích hình phẳng giới hạn bởi AB, AC và cung nhỏ BC theo R
a Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
=>OH*OA=OB^2=R^2
b: góc ABM=góc ACM
góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM
=>BM là phân giác của góc ABH
Cho điểm A nằm ngoài đường tròn (O;R). Từ A nằm ngoài đường tròn kẻ các tiếp tuyến AB, AC với đường tròn O(B, C là các tiếp điểm). Gọi H là trung điểm của BC và AO
a) Chứng minh rằng bốn điểm A, B, C, O cùng thuộc một đường tròn.
b) Cho AB = 8cm;BC =9,6cm. Tính bán kính R và số đo góc BAC (làm tròn đến độ)
c)Kẻ đường kính BD của đường tròn (O) , AD cắt đường (O) tại điểm thứ 2 là E. Chứng minh góc AHE = góc BDE.
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
c: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{HAE}\) chung
Do đó: ΔAEH\(\sim\)ΔAOD
Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)
Từ một điểm A nằm ngoài đường tròn tâm O vẽ tiếp tuyến AB ( B là tiếp điểm ) và cát tuyết ACD . Gọi I là trung điểm của CD . Vẽ dây cung BE vuông góc với OA tại H . Chứng minh AE là tiếp tuyến của đường tròn tâm O Từ một điểm A nằm ngoài đường tròn tâm O vẽ tiếp tuyến AB ( B là tiếp điểm ) và cát tuyết ACD . Gọi I là trung điểm của CD . Vẽ dây cung BE vuông góc với OA tại H . Chứng minh AE là tiếp tuyến của đường tròn tâm O
Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O
Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE
Hay OA là trung trực của BE
\(\Rightarrow AB=AE\)
Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)
\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)
Từ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B; C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại ETừ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B;C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại E.a.Chứng minh : tứ giác OBAC nội tiếp và AB^2=AE.AKb.Chứng minh : tứ giác OHEK nội tiếp và CE vuông góc HEc.Tia BK và tia AC cắt nhau tại F.Kẻ CI vu
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
cho đường tròn O điểm A nằm ngoài đường tròn từ A vẽ các tiếp tuyến AB , AC với đường tròn ( BC là tiếp điểm ) vẽ các tuyến góc AMN với đường tròn O a, CMR AB
Từ điểm A nằm ngoài đường tròn O vẽ h ai tiếp tuyến AM, AN của đường tròn O. ( M, N là các tiếp điểm. Đường thẳng thông qua A không đi qua tâm O cắt đường tròn tại hai điểm B và C ( B nằm giữa A, C a) chứng minh tứ giác AMON nội tiếp đường tròn
Vì AM và AN là 2 tiếp tuyến của đường tròn tâm O
=> \(\left\{{}\begin{matrix}AM\perp OM\\AN\perp ON\end{matrix}\right.\) => \(\left\{{}\begin{matrix}GócAMO=90\\GócANO=90\end{matrix}\right.\)
Xét từ giác AMON có :
AMO + ANO = 90 + 90 = 180
Mà 2 góc này ở vị try đối diện nhau
=> Tứ giác AMON nội tiếp < đpcm>
từ điểm a nằm ngoài đường tròn tâm o vẽ hai tiếp tuyến ab ac đến đường tròn tâm o (b,c là các tiếp điểm).Qua a kẻ đường thẳng d nằm giữa ab và ao cắt đường tròn (o) tại e và f( e nằm giữa a và f ).Gọi h là trung điểm của bc.I là trung điểm ef.Đường thẳng vuông góc với ef tại I cắt đường thẳng bc tại s.Chứng minh năm điểm a,b,i,o,c cùng thuộc một đường tròn.Xác định tâm m của đường tròn đó
Giúp mình với ạ cần gấp plsss TT
Cho đường tròn (O) và điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (O) ( B và C là các tiếp điểm). Đường thẳng CO cắt đường tròn (O) tại điểm thứ hai là D) ; đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là E .
a) Chứng minh tứ giác ABOC nội tiếp đường tròn.
b) Gọi H là giao điểm của A0 và BC . Chứng minh AE.AD = AH.AO = AB^2.
c) Đường thẳng BE cắt AO tại F. Chứng minh HE vuông góc với BF.
giúp tớ với ạ tớ đang cần luôn phần b và c. tớ cảm ơn nhiều ạ
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
=>AH*AO=AB^2
Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
=>ΔABE đồng dạng với ΔADB
=>AB^2=AE*AD=AH*AO