Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D. ( VẼ HÌNH HỘ MÌNH ) a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO) b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH c) CM EH là tiếp tuyến của đt (O)
Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D. ( VẼ HÌNH HỘ MÌNH ) a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO) b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH c) CM EH là tiếp tuyến của đt (O)
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn. Từ A vẽ tiếp tuyến AB, AC với đường tròn (O) với B, C là các tiếp điểm. Gọi giao điểm của BC và OA là I. Kẻ đường kính BD. Đường thẳng vuông góc với BD tại O cắt đường thẳng BC tại K. Chứng minh
a. Bốn điểm A, B, O, C cùng thuộc một đường tròn.
b. DC//OA.
c. Giả sử AB = 20cm. BC = 12cm. Tính bán kính R của đường tròn.
d. IK.IC + OI.IA = R2.
Cho đường tròn (O,R) và điểm A nằm ngoài đường tròn O vẽ tiếp tuyến AB của đường tròn (O).Vẽ dây cung BC của đường tròn O vuông góc OA tại H
a,Cm AC là tiếp tuyến (O)
b,Với OA=2R.Tính góc ABC
Cho đường tròn tâm O bán kính R điểm A nằm ngoài đường trong tâm O sao cho AO=2R. từ A vẽ 2 tiếp tuyến AB,AC với đường tròn (BC là các tiếp điểm) đoạn thẳng OA cắt đường tròn tâm O tại I đường thẳng qua O và vuông góc với OB cắt AC tại K.Chứng minh rằng: a, Tam giác OAK cân tại A b,KI là tiếp tuyến của đường tròn tâm O
Từ điểm A nằm ngoài đường tròn ( O;R) vẽ tiếp tuyến AB, AC và cát tuyến AMN.
1) CMR 4 điểm A, B , O , C cùng thuộc một đường tròn
2) kẻ đường kính CF của đường tròn (O). CMR FB // OA.
3) CMR đường thẳng BC và hai tiếp tuyến tại N, M của đường tròn (O) đồng quy.
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ các tiếp tuyến AB và AC đến (O) với B, C là tiếp điểm. Gọi H là giao điểm của BC với OA. Vẽ CD là đường kính của (O), AD cắt đường tròn (O) tại điểm thứ 2 là E. a) Chứng minh: ∆CED vuông tại E và OA vuông góc BC tại H b) Chứng minh AE. AD = AH. AO và AHE = ADO c) Gọi I là giao điểm của BC và DE. Chứng mình DHO = EHA và 1/AE + 1/AD = 2/AI
Cho đường tròn tâm O bán kính 5cm. Từ điểm A nằm ngoài đường tròn vẽ tiếp tuyến AB với đưuòng tròn (O) (B là tiếp điểm). a/ Giải tam giác vuông AOB. b/ Kẻ dây BC vuông góc với OA tại H. Tính độ dài dây AB. c/ Chứng minh AC là tiếp tuyến của đường tròn tâm O.
Cho đường tròn (O,R) điểm A nằm bên ngoài đường tròn, vẽ hai tiếp tuyến AB,AC với đường tròn (B và C là hai tiếp điểm) vẽ đường kính CD của đường tròn O. Chứng minh :
a)OA vuông góc BC
b)BD // OA
c)Cho R =6cm, AB =8cm. Tính BC.