Câu 4. (3,5 điểm) Cho đường tròn (O;R), đường kính AB. Vẽ điểm C thuộc đường tròn (O;R) sao cho AC = R. Kẻ OH vuông góc với AC tại H. Qua điểm C vẽ một tiếp tuyến của đường tròn (O;R), tiếp tuyến này cắt đường thẳng OH tại D.
1) Chứng minh AD là tiếp tuyến của đường tròn (O;R).
2) Tính BC theo R và các tỉ số lượng giác của góc ABC.
3) Gọi M là điểm thuộc tia đối của tia CA. Chứng min MC.MA = MO2 – AO2
Câu 5. (0,75 điểm) Chứng minh rằng với mỗi số nguyên a thì biểu thức sau luôn nhận giá trị là một số nguyên :
\(D=\sqrt{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36}\)