Từ 1 điểm A ngoài (O;R) kẻ 2tt AB,AC đến (O)(B,C là tiêp điểm). Duong thẳng BC cắt AO tại I. Tia AO cắt (O) tại M,N. 1 cát tuyên qua A cắt (O) lần lượt tại E,F.
a> C/m AC^2= AE.AF
b> AE.AF=AO.AI
Từ điểm A nằm ngoài đường tròn (O,R), kẻ 2 tiếp tuyến AB,AC (B,C tiếp điểm) a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đtron b)cmr BC<AO
Xét (O; R):
AB là tiếp tuyến; B là tiếp điểm (gt).
=> OB vuông góc AB (Tính chất tiếp tuyến).
=> Tam giác ABO vuông tại B.
=> A; B; O thuộc đường tròn đường kính OA. (1)
Xét (O; R):
AC là tiếp tuyến; C là tiếp điểm (gt).
=> OC vuông góc AC (Tính chất tiếp tuyến).
=> Tam giác ACO vuông tại C.
=> A; C; O thuộc đường trong đường kính AO. (2)
Từ (1); (2) => A; B; O; C cùng thuộc đường tròn đường kính AO (đpcm).
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
cho đương tròn (O,R)và một điểm A nằm ngoài đường tròn (O,R).Từ A vẽ hai điểm tiếp tuyến AB,AC của (O,R) ( B,C là tiếp điểm).Từ B vẽ đường kính BD của (O ,R), đường thẳng AD cắt (O,R) tại E (khác D) . CM 4 điểm A,B,C,O cùng thuộc 1 đường tròn
Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
Từ điểm A nằm ngoài (O) kẻ 2 tiếp tuyến AB, AC (B, C là tiếp điểm)
a) Chứng minh: 4 điểm A, B, O, C cùng thuộc 1 đường tròn
b) Kẻ đường kính BE. Chứng minh: AO // EC
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
Cho (O) và 1 điểm A nằm ngoài đường tròn. Từ A kẻ 2 tiếp tuyến AB, AC (B và C là 2 tiếp điểm). Từ A kẻ thêm các tuyến AMN đi qua (O) và nằm trong góc BAO. Chúng minh AB.AB=AM.AN
Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
cho đường tròn (O;R) và đường thẳng a ở ngoài đường thẳng a ở ngoài đường tròn. Gọi OH là khoảng cách từ tâm O đếna và M là một điểm chuyển động trên a. Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (O) , (A,B là 2 tiếp điểm). Gọi D là giao điểm của AB với OH.CMR D là điểm cố định
Trả lời :
Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.
- Hok tốt !
^_^
dễ ẹc thì lm cho mk coi đi
mk ko bt lm
Từ một điểm A nằm ngoài đường tròn tâm O vẽ tiếp tuyến AB ( B là tiếp điểm ) và cát tuyết ACD . Gọi I là trung điểm của CD . Vẽ dây cung BE vuông góc với OA tại H . Chứng minh AE là tiếp tuyến của đường tròn tâm O Từ một điểm A nằm ngoài đường tròn tâm O vẽ tiếp tuyến AB ( B là tiếp điểm ) và cát tuyết ACD . Gọi I là trung điểm của CD . Vẽ dây cung BE vuông góc với OA tại H . Chứng minh AE là tiếp tuyến của đường tròn tâm O
Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O
Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE
Hay OA là trung trực của BE
\(\Rightarrow AB=AE\)
Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)
\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)
1. cho đường tròn (O) và điểm M nằm ngoài (O). Từ điểm M kẻ hai tiếp tuyến MA,MC (A,C là các tiếp điểm ) tới đường tròn(O) .Từ điểm M kẻ cát tuyến MBD (B nằm giữa M và D, MBD ko đi qua O). gọi H là giao điểm của OM và AC . từ C kẻ đường thẳng song song với BD cắt đường tròn(O) tại E (E khác C) , gọi K là giao điểm của AE và BD . chứng minh
a, Tứ giác OAMC nội tiếp
b, K là trung điểm của BD
c, AC là phân giác của góc BHD
a) Xét tứ giác OAMC có
\(\widehat{OAM}\) và \(\widehat{OCM}\) là hai góc đối
\(\widehat{OAM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OAMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
1. cho đường tròn (O) và điểm M nằm ngoài (O). Từ điểm M kẻ hai tiếp tuyến MA,MC (A,C là các tiếp điểm ) tới đường tròn(O) .Từ điểm M kẻ cát tuyến MBD (B nằm giữa M và D, MBD ko đi qua O). gọi H là giao điểm của OM và AC . từ C kẻ đường thẳng song song với BD cắt đường tròn(O) tại E (E khác C) , gọi K là giao điểm của AE và BD . chứng minh
a, Tứ giác OAMC nội tiếp
b, K là trung điểm của BD
c, AC là phân giác của góc BHD
a: góc OAM+góc OCM=180 độ
=>OAMC nội tiếp
b: CE//BD
=>góc AKM=góc AEC=góc ACM
=>AKCM nội tiếp
=>A,K,C,M cùng nằm trên 1 đường tròn
=>góc OKM=90 độ
=>K là trung điểm của BD
Từ 1 điểm A nằm ngoài (O;R) vẽ 2 tiếp tuyến AB;AC với O (B,C là các tiếp điểm).Gọi H là chân đường vuông góc kẻ từ B xuống đường kính CD của (O).CMR: IB = IH, biết I là giao điểm của AD,BH
Cho đường tròn (O;R) và 1 điểm A nằm ngoài (O) sao cho OA=3R. Từ điểm A vẽ 2 tiếp tuyến AB,AC tới (O) (B,C là tiếp điểm)
a, Chứng minh tứ giác OBAC nội tiếp
b, Từ B vẽ đường thẳng song song với AC cắt (O) tại D (D khác B); AD cắt (O) tại E (E khác D). Chứng minh AE.AD=AB^2,từ đó tính tích AD.AE theo R
c, Chứng minh CEA=BEC
d, Tia BE cắt AC tại F. Chứng minh F là trung điểm của AC
Ta có hình vẽ sau:
a)Vì các tiếp tuyến AB, AC của (O) có B,C ∈ (O) nên \(\widehat{ABO}=\widehat{OCA}=90^o\)
Xét tứ giác OBAC có: \(\widehat{ABO}+\widehat{OCA}=90^o+90^o=180^o\)
\(\widehat{ABO}\) và \(\widehat{OCA}\) đối nhau
➤ Tứ giác OBAC nội tiếp đường tròn đường kính OA
b) Vì góc nội tiếp \(\widehat{BDE}\) chắn \(\stackrel\frown{BE}\); \(\widehat{ABE}\) được tạo bởi tiếp tuyến AB và chắn \(\stackrel\frown{BE}\) nên
\(sđ\dfrac{\stackrel\frown{BE}}{2}=sđ\widehat{ABE}=sđ\widehat{BDE}\) trong khi E ∈ AD
▲ABE và ▲ADB có: \(\widehat{ABE}=\widehat{BDA}\)(cmtrên)
\(\widehat{A}\) là góc chung
⇒▲ABE ∼ ▲ADB(g-g) ⇔ \(\dfrac{AB}{AD}=\dfrac{AE}{AB}\Leftrightarrow AB^2=AD\cdot AE\)(điều phải chứng minh)
Vì ▲OAB vuông tại B nên ta có: \(AB^2+OB^2=OA^2\)(Định lý Pytago)
\(\Leftrightarrow AB^2=OA^2-OB^2=\left(3R\right)^2-R^2\) vì B∈(O)
\(=9R^2-R^2\\=8R^2 \)
Trong khi, \(AB^2=AD\cdot AE\)(cmtrên). ➤\(AD\cdot AE=8R^2\left(=AB^2\right)\)