Cho hình bình hành ABCD. Trên cạnh BC và CD lấy M và N Sao cho \(\dfrac{CN}{DN}=2.\dfrac{BM}{CM}\); BD cắt AM, AN lần lượt tại I và Q. Chứng minh: SAMN=2.SAIQ
Cho hình bình hành ABCD. Trên cạnh BC và CD lấy M và N Sao cho \(\frac{CN}{DN}=2.\frac{BM}{CM}\); BD cắt AM, AN lần lượt tại I và Q. Chứng minh: SAMN=2.SAIQ
1.Cho hình bình hành ABCD .Gọi M và N là các trung điểm của AD và BC
a)C/m BM//DN
b)C/m AC ,BD và MN đồng quy
c)AC cắt BM và CN tại E và F , BF cắt CD tại K .C/m DE=2KF
2.Cho hình bình hành ABCD .Trên các cạnh AB,CD lấy điểm E,F sao cho AE=CF
a) C/m BDEF là hình bình hành
b)C/m AC ,BD và EF đồng quy
c)CD và BF cắt AC tại H và K . C/m AH=CK
1:
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
Suy ra: BM//DN
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2S_{\Delta APQ}\)
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2.S_{\Delta APQ}\)
cho hình bình hành ABCD. Trên cạnh CD và BC lấy M, N sao cho BM = DN. Gọi I là giao điểm BM và DN. Chứng minh rằng IA là phân giác góc DIB.
Cho hình bình hành ABCD. Trên cạnh CD và BC lấy M, N sao cho BM = DN. Gọi I là giao điểm của BM và DN. CMR: IA là tia phân giác của DIB.
Gọi khoảng cách từ A đến BM,ND lần lượt là h và k. Kẻ MH vuông góc AB
Ta có : \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\)
Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)
Do đó : \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\)
Mà BM=DN nên h=k
Suy ra khoảng cách từ A đến hai đường thẳng BM,DN là bằng nhau; BM cắt DN tại I
Vậy thì A nằm trên phân giác của \(\widehat{DIB}\) hay IA là phân giác của góc DIB ( đpcm )
cho hình bình hành ABCD. Trên cạnh CD và BC lấy M, N sao choBM = DN. Gọi I là giao điểm BM và DN. Chứng minh rằng IA là phân giác góc DIB.
Gọi khoảng cách từ A đến BM,DN lần lượt là h và k. Kẻ MH vuông góc AB.
Ta có \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\). Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)
Do đó \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\). Mà BM = DN nên \(h=k\)
Suy ra khoảng cách từ A đến 2 đường thẳng BM,DN là bằng nhau; BM cắt DN tại I
Vậy thì A nằm trên phân giác của ^DIB hay IA là phân giác góc DIB (đpcm).
Cho hình vuông ABCD. Lấy M ∈BC sao cho BM = \(\dfrac{1}{3}\) BC, lấy N∈tia đối tia CD sao cho CN = \(\dfrac{1}{2}\) BC. Cạnh AM cắt BN tại I và cạnh CI cắt AB tại K. H là hình chiếu của M trên AC. Gọi E là giao điểm của AI và DC.
Chứng minh: K, M, H thẳng hàng
Cho hình bình hành ABCD M trên AB tia DM cắt AC và CB lần lượt tại K và N. chứng minh
a) \(\dfrac{AM}{CD}=\dfrac{AN}{CN}\)
b)\(DM^2=KM.KN\)
c)\(\dfrac{1}{DM}+\dfrac{1}{DN}=\dfrac{1}{DK}\)
Cho hình bình hành ABCD. Gọi M là điểm di động trên cạnh CD và N là điểm di động trên cạnh BC sao cho BM = DN. Hai đường thăng BM và DN cắt nhau tại P. Chứng minh PA là tia phân giác của góc BPD.