Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bolbbalgan4
Xem chi tiết
Nguyễn Vũ Đức
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2021 lúc 14:42

1: 

a: Xét tứ giác BMDN có 

DM//BN

DM=BN

Do đó: BMDN là hình bình hành

Suy ra: BM//DN

Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Đào Trọng Tấn
Xem chi tiết
Lê Vũ Anh Thư
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
22 tháng 4 2020 lúc 15:08

A H B N C M D I

Gọi khoảng cách từ A đến BM,ND lần lượt là h và k. Kẻ MH vuông góc AB

Ta có : \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\)

Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)

Do đó : \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\)

Mà BM=DN nên h=k

Suy ra khoảng cách từ A đến hai đường thẳng BM,DN là bằng nhau; BM cắt DN tại I

Vậy thì A nằm trên phân giác của \(\widehat{DIB}\) hay IA là phân giác của góc DIB ( đpcm ) 

Khách vãng lai đã xóa
Phạm Thị Thùy Linh
Xem chi tiết
Nguyễn Tất Đạt
16 tháng 7 2019 lúc 14:42

A B C D M N I H

Gọi khoảng cách từ A đến BM,DN lần lượt là h và k. Kẻ MH vuông góc AB.

Ta có \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\). Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)

Do đó \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\). Mà BM = DN nên \(h=k\)

Suy ra khoảng cách từ A đến 2 đường thẳng BM,DN là bằng nhau; BM cắt DN tại I

Vậy thì A nằm trên phân giác của ^DIB hay IA là phân giác góc DIB (đpcm).

Đặng AnhThư
Xem chi tiết
Ngọc Minh
Xem chi tiết
Băng Twinkle
Xem chi tiết