Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2S_{\Delta APQ}\)
Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
Cho \(\Delta ABC,đường\) trung tuyến AM. Trên cạnh AC lấy điểm D sao cho \(AD=\dfrac{1}{3}AC\) , BD cắt AM tại I. Biết \(S_{ABC}=20cm^2\) . Tính \(S_{ABI}\) .
Cho hình vuông ABCD có cạnh bằng 2cm. Gọi E, F lần lượt là trung điểm của AD và CD. Gọi H, I lần lượt là giao điểm của AF với BD và BE.
a, C/minh: \(\Delta AIE\sim\Delta ADF\)
b, Tính \(S_{EIHD}\) .
1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD
2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR
a) DM2=MN. MK
b) \(\dfrac{DM}{DN}\) +\(\dfrac{DM}{DK}\)=1
3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC, CA, AB của tam giác sao cho ba đg AA' ; BB' ; CC' đồng quy thì \(\dfrac{A'B}{A'C}\).\(\dfrac{B'C}{B'A}\).\(\dfrac{C'A}{C'B}\)=1
4. cho tam giác ABC. 1 dg thẳng d cắt cạnh AB tại D, cắt cạnh AC tại E và cắt đg thẳng BC tại N. Gọi O là giao điểm củ BE và CD. Tia AO cắt BC tại M. CMR 2 điểm M và N CHIA TRONG VÀ CHIA NGOÀI ĐOẠN THẲNG BC theo cùng 1 tỉ lệ
5. cho hình thang ABCD (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC a) CMR IK//AB b) đg thẳng IK cắt AD, BC theo thứ tự tại E, F. CMR EI=IK=KF
Giúp mk với ạ.
1: Cho số thực x đk: \(0\le x\le1\)
Tim min và max của:
\(A=\dfrac{x^2}{2-x^2}+\dfrac{1-x^2}{1+x^2}\)
2: Cho hình vuông ABCD có M là trung điểm của DC, trên cạnh BC là 2 điểm H và K sao cho BH = HK = KC, AM cắt BD tại N. CMR:
a, \(\Delta ANH\) vuông cân tại N.
b, AC đi qua trung điểm của NK.
Cho \(\Delta ABC\) , trên BC lấy điểm M sao cho \(\dfrac{MC}{MB}=\dfrac{1}{2}\) , trên AC lấy điểm N sao cho \(\dfrac{NC}{NA}=\dfrac{1}{2}\) . Gọi G là giao điểm của AM và BN. C/minh:
a, MN // AB
b, \(\dfrac{GM}{GA}=\dfrac{GN}{GB}=\dfrac{1}{3}\)
Cho hình bình hành ABCD có E, F lần lượt là trung điểm của AB và CD. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N
a) CM: các tứ giác DEBF, EMFN là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để tứ giác MENF là hình thoi