Cho tam giác ABC, M thuộc BC, N thuộc AC sao cho \(\dfrac{BM}{MC}=\dfrac{2}{3};\dfrac{CN}{NA}=\dfrac{3}{5}\), AM cắt BN tại O.
a) Tính tỉ số \(\dfrac{AO}{AM}\)
b) Lấy điểm P trên AB sao cho \(\dfrac{PB}{BA}=\dfrac{2}{7}\). Chứng minh: AM, BN, CP đồng quy
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2S_{\Delta APQ}\)
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2.S_{\Delta APQ}\)
Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
Cho \(\Delta ABC\) , lấy điểm M trên BC và N trên AC sao cho \(\dfrac{CM}{BC}=\dfrac{CN}{AC}=\dfrac{1}{2}\) . Đường trung tuyến CI của \(\Delta ABC\) cắt MN tại K.
a, C/minh: MN // AB.
b, KM = KN.
Cho tam giác ABC, M là 1 điểm nằm trên cạnh BC thỏa mãn: \(BM=\dfrac{1}{3}BC\); lấy I thuộc đoạn AM sao cho \(AI=\dfrac{1}{3}AM\). Tia BI cắt cạnh AC tại D. Tính tỉ số \(\dfrac{AD}{AC}\)
Cho tam giacs ABC cos S = 27cm^2. Lấy các điểm M, N, P lần lượt trên các cạnh AB, BC, AC sao cho \(\dfrac{AM}{BM}=\dfrac{BM}{NC}=\dfrac{CP}{PA}=\dfrac{1}{2}\). Khi đó diện tích tam giac ABC là
Cho \(\Delta\) ABC có diện tích 27 cm2 .Lấy các điểm M,N,P lần lượt trên AB,DC,CA sao cho \(\dfrac{AM}{BM}=\dfrac{BN}{NC}=\dfrac{CP}{DA}=\dfrac{1}{2}\)
.Khi đó diện tích MNP là bao nhiêu ?
Cho tam giác ABC có diện tích 27cm2.Lấy các điểm M,N,P lần lượt trên các cạnh AB,BC,CA sao cho \(\dfrac{AM}{BM}=\dfrac{BN}{NC}=\dfrac{CP}{PA}=\dfrac{1}{2}\)
Tính diện tích tam giác MNP