Kẻ MK//BD
Xét ΔBDC có
M là trung điểm của CB
MK//BD
Do đó: K là trung điểm của CD
=>CK=KD=1/2CD=1/3AC=AD
Xét ΔAMK có
D là trung điểm của AK
DI//MK
Do đó: I là trung điểm của AM
Xét ΔBDC có MK//BD
nên MK/BD=CM/CB=1/2
Xét ΔAMK có DI//MK
nên DI/MK=1/2
=>DI=1/2MK=1/4BD
Kẻ BH vuông góc với AC
\(S_{ABC}=\dfrac{1}{2}\cdot BH\cdot AC\)
\(S_{ABD}=\dfrac{1}{2}\cdot BH\cdot AD\)
=>\(\dfrac{S_{ABC}}{S_{ABD}}=\dfrac{AC}{AD}=3\)
=>\(S_{ABD}=\dfrac{20}{3}\left(cm\right)\)
Kẻ AK vuông góc BD
\(S_{ABD}=\dfrac{1}{2}\cdot AK\cdot BD\)
\(S_{ABI}=\dfrac{1}{2}\cdot AK\cdot BI\)
=>\(\dfrac{S_{ABD}}{S_{ABI}}=\dfrac{BD}{BI}=\dfrac{4}{3}\)
=>\(S_{ABI}=\dfrac{20}{3}:\dfrac{4}{3}=\dfrac{20}{4}=5\left(cm^2\right)\)