bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC. 2) tứ giác EFQP là hình gì ? 3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm 4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)
bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN. 2) AM = MN = NC . 3) 2EN = DM + BC .4)\(S_{ABC}=3S_{AMB}\)
bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC. 1) C/m E ,F ,I thẳng hàng . 2) tính \(S_{ABCD}\) . 3) so sánh \(S_{ADC}\) và\(2S_{ABC}\)
bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng
2) tính \(EF\le\frac{AB+CD}{2}\)
3) tứ giác ABCD phải có điều kiện gì thì EF = \(\frac{AB+CD}{2}\)
Bài 2: (Dạng 1) Cho tam giác ABC có cạnh BC = a. Trên cạnh AB lấy điểm D và E sao cho AD = DE = EB. Từ D, E kẻ các đường thăng song song với BC cắt AC theo thứ tự tại M, N. Tính theo a độ dài các đoạn thắng DM và EN. %3D . . Bài 3: (Dạng 2) Cho tam giác ABC có điểm M trên cạnh BC sao cho BC=4CM. Trên cạnh AC lấy điểm N sao cho CN_1.Chứng minh MN song AN 3 song với AB.
Cho tam giác ABC, trên cạnh AB lấy các điểm M, N sao cho AM = MN = NB. Từ M, N kẻ các đường thẳng song song với BC cắt cạnh AC lần lượt tại D, E. Tính độ dài MD, NE biết BC = 6 cm.
Cho tam giác ABC có AB=12cm , AC=15cm, BC=q6cm. Trên cạnh AB lấy điểm M sao cho AM=3cm. Từ M kẻ đường thẳng song song với BC cắt AC tại N, cắt trung tuyến AI tại K.
a/ Tính độ dài MN
b/ Chứng minh K là trung điểm của MN
c/ Trên tia MN lấy điểm P sao cho MP=8cm. Nối PI cắt AC tại Q. Chững minh tam giác QIC đồng dạng với tam giác AMN
Cho tam giác ABC. Gọi I là một điểm di chuyển trên cạnh BC. Qua I kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I kẻ đường thẳng song song với cạnh AB cắt AC tại N.
a, Gọi O là trung điểm của AI. Chứng minh rằng ba điểm M, O, N thẳng hàng.
b, Kẻ MH, NK, AD vuông góc với BC lần lượt tại H, K, D. Chứng minh rằng MH+NK+AD.
c, Tìm vị trí của điểm I để MN song song với BC.
Bài 1: Cho tam giác ABC cân tại A, đường cao AM, N là trung điểm của AC. Qua A kẻ dường thẳng song song với BC cắt MN tại E. CMR:
a. M là trung điểm của BC
b. ME // AB
c. AE = MC
Bài 2 : Cho tam giác ABC. Trên cạnh AC lấy 2 điểm D và E sao cho AD = DE = EC. M là trung diểm của BC, BD cắt AM tại I. CMR:
a, ME // BD
b, I là trung điểm của AM
c, BD = 4 ID
Cho ΔABC cân tại A. Trên cạnh AB lấy điểm D,E sao cho AD=DE=EB. Qua E vẽ đường thẳng song song với BC cắt cạnh AC tại N. Gọi M là trung điểm của AN. a)Chứng minh rằng: Tứ giác DMCB là hình thang cân.
b)Gọi I là giao điểm của tia BN và tia DM. Chứng minh rằng MI=BC.
c)Chứng minh rằng Δ DCI cân.
d)Chứng minh rằng MI=3MD
Cần gấp ạ!!!
Cho tam giác ABC có 3 góc nhọn, lấy điểm M là trung điểm BC. Qua điểm D thuộc đoạn BM, vẽ đường thẳng song song với AM, đường thẳng này cắt 2 đường thẳng AB, AC lần lượt tại E và F. Qua A vẽ đường thẳng song song với BC và cắt EF tại K
1, Chứng minh \(\widehat{AKE}=\widehat{ACB}+\widehat{MAC}\)
2, Tính giá trị của DE + DF - 2AM
3, Chứng minh K là trung điểm của đoạn EF
cho hình chữ nhật ABCD ( AB<BC) . gọi M là trung điểm cạnh BC sao cho CM=CD . từ M kẻ đường thẳng song song với CD cắt AD tại N . trên tia đối của tia MN lấy điểm E sao cho ME=MB . chứng minh AD vuông góc DE