cho ht ABCD ( AB//CD) có AB=8cm;CD=16cm
gọi M;Nlần lượt là trung điểm của AD vàBC
Trên tia đối của tia DA lấy điểm E sao cho DE=1/2 AD.Qua điểm E kể đường thẳng song song với CD
cắt BC tại F.Tính MN và EF
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
Giúp mk với ạ.
Cho hình chữ nhật ABCD có AB=2.AD. Gọi E; I lần lượt là trung điểm của AB và CD. Nối D và E. Vẽ tia Dx sao cho Dx vuông góc với DE, và Dx cắt tia đối của tia CB tại M. Trên tia đối của tia CE lấy điểm K sao cho DM=EK. Gọi G là giao điểmcủa DK và EM.
Tính số đo \(\widehat{DBK}\) ?
Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON.
Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON
Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON
Cho tam giác ABC có AB=12cm , AC=15cm, BC=q6cm. Trên cạnh AB lấy điểm M sao cho AM=3cm. Từ M kẻ đường thẳng song song với BC cắt AC tại N, cắt trung tuyến AI tại K.
a/ Tính độ dài MN
b/ Chứng minh K là trung điểm của MN
c/ Trên tia MN lấy điểm P sao cho MP=8cm. Nối PI cắt AC tại Q. Chững minh tam giác QIC đồng dạng với tam giác AMN
Cho hình chữ nhật ABCD. Gọi M và N thứ tự là trung điểm của AD và BC. Trên tia đối của tia DC lấy điểm Q. QM cắt AC tại K. Từ M vẽ đường thẳng song song với QN cắt KN tại E. Đường phân giác góc QKN cắt MN tại I. Kẻ IF vuông góc với QN. cho IF=1
Chứng minh: \(IK+IQ+IN\ge6\)
Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.