So sánh:
a) \(A=\frac{n}{n+1};B=\frac{n+2}{n+3}\left(n\inℕ\right)\)
b) \(A=\frac{n}{n+3};B=\frac{n-1}{n+4}\left(n\inℕ^∗\right)\)
c) \(A=\frac{n}{2n+1};B=\frac{3n+1}{6n+3}\left(n\inℕ\right)\)
Giúp mình nhé gấp lắm ai trả lời đầu tiên mình sẽ tick
So sánh:A= \(\frac{a^n-1}{a^n}\)và B=\(\frac{a^n}{a^n+1}\)
lm nhanh giúp mình, mình đang cần gấp
A=\(\frac{a^n-1}{a^n}\)=\(1-\frac{1}{a^n}\)
B=\(\frac{a^n}{a^n+1}\)=\(\frac{a^n+1-1}{a^n+1}\)=\(1-\frac{1}{a^n+1}\)
vì 1/an>1/an+1 suy ra 1-1/an<1-1/an+1 suy ra A<B
chúc bạn học tốt!!!!
Ta có : \(\frac{a^n-1}{a^n}\),\(\frac{a^n}{a^n+1}\)
Quy đồng , ta có :
\(A=\frac{\left(a^n-1\right).1}{a^n+1}\);\(B=\frac{a^n}{a^n+1}\)
=>\(A=\left(a^n-1\right).1;B=a^n\)
=> \(A=a^n-1;B=a^n\)
ta có:
th1 : nếu a hoặc n là âm thì :
\(a^n-1< a^n\)
th2: nếu cả a và n đều là dương hoặc âm thì :
\(a^n-1< a^n\)
VẬy...
Đặt \(a^n=\overline{h.anh}\)khi đó
\(A=\frac{\overline{h.anh}-1}{\overline{h.anh}}=\frac{\left(\overline{h.anh}-1\right)\left(\overline{h.anh}+1\right)}{\overline{h.anh}\left(\overline{h.anh}+1\right)}=\frac{\overline{h.anh}^2-1}{\overline{h.anh}^2+\overline{h.anh}}\)
\(B=\frac{\overline{h.anh}}{\overline{h.anh}+1}=\frac{\overline{h.anh}.\overline{h.anh}}{\left(\overline{h.anh}+1\right)\overline{h.anh}}=\frac{\overline{h.anh}^2}{\overline{h.anh}^2+\overline{h.anh}}\)
Do \(\frac{\overline{h.anh}^2-1}{\overline{h.anh}^2+\overline{h.anh}}\le\frac{\overline{h.anh}^2}{\overline{h.anh}^2+\overline{h.anh}}\)
Suy ra \(A< B\)
okela ?
Cho M = 25, N = 23. Tính và so sánh:
a) \({\log _2}\left( {MN} \right)\) và \({\log _2}M + {\log _2}N;\)
b) \({\log _2}\left( {\frac{M}{N}} \right)\) và \({\log _2}M - {\log _2}N.\)
a: \(log_2\left(M\cdot N\right)=log_2\left(2^5\cdot2^3\right)=log_2\left(2^8\right)=8\)
\(log_2M+log_2N=log_22^5+log_22^3=5+3=8\)
=>\(log_2\left(MN\right)=log_2M+log_2N\)
b: \(log_2\left(\dfrac{M}{N}\right)=log_2\left(\dfrac{2^5}{2^3}\right)=log_2\left(2^2\right)=2\)
\(log_2M-log_2N=log_22^5-log_22^3=5-3=2\)
=>\(log_2\left(\dfrac{M}{N}\right)=log_2M-log_2N\)
So sánh:
a) -2,5 và -2,125; b) \( - \frac{1}{{10000}}\) và \(\frac{1}{{23456}}\)
a) Vì 2,5 > 2,125 nên -2,5 < -2,125
b) Vì \( - \frac{1}{{10000}}\)< 0 và 0 < \(\frac{1}{{23456}}\)nên \( - \frac{1}{{10000}}\) < \(\frac{1}{{23456}}\)
Chú ý: Số hữu tỉ âm luôn nhỏ hơn số hữu tỉ dương.
So sánh:
a) 3\(^{2+n}\) và 2 \(^{3+n}\)
`3^(2 + n) và 2^(3 + n) `
`3^(2 + n) = 3^2 xx 3^n = 9 xx 3^n`
`2^(3 + n) = 2^3 xx 2^n = 8 xx 2^n`
ta thấy `9>8 ; 3^n > 2^n `
vậy `3^(2 + n) > 2^(3 + n) `
\(\left\{{}\begin{matrix}3^{2+n}=3^2\times3^n=9\times3^n\\2^{3+n}=2^3\times2^n=8\times2^n\end{matrix}\right.\)
ta có
\(\left\{{}\begin{matrix}9>8\\3^n>2^n\end{matrix}\right.\)
\(=>3^{2+n}>2^{3+n}\)
So sánh:
a) \( - \frac{1}{3}\) và \(\frac{{ - 2}}{5}\)
b) 0,125 và 0,13
c) -0,6 và \(\frac{{ - 2}}{3}\)
a) Ta có:
\( - \frac{1}{3} = \frac{{ - 5}}{{15}};\frac{{ - 2}}{5} = \frac{{ - 6}}{{15}}\)
Vì -5 > -6 nên \(\frac{{ - 5}}{{15}} > \frac{{ - 6}}{{15}}\) hay \( - \frac{1}{3}\) > \(\frac{{ - 2}}{5}\)
b) 0,125 < 0,13 vì chữ số hàng phần trăm của 0,125 là 2 nhỏ hơn chữ số hàng phần trăm của 0,13 là 3
c) Ta có:
\(\begin{array}{l} - 0,6 = \frac{{ - 6}}{{10}} = \frac{{ - 3}}{5} = \frac{{ - 9}}{{15}};\\\frac{{ - 2}}{3} = \frac{{ - 10}}{{15}}\end{array}\)
Vì -9 > -10 nên \(\frac{{ - 9}}{{15}} > \frac{{ - 10}}{{15}}\) hay - 0,6 > \(\frac{{ - 2}}{3}\)
So sánh:a) \(\frac{n}{2n+1}\)và \(\frac{3n+1}{6n+3}\)
b) \(\frac{n}{n+1}\)và\(\frac{n+2}{n+3}\) (n thuộc Z)
c)\(\frac{n}{n+3}\)và\(\frac{n-1}{n+4}\)(n thuộc Z)
a) quy đồng : \(\frac{n}{2n+1}=\frac{3n}{6n+3}\)
Vì 3n < 3n + 1 => \(\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)hay \(\frac{n}{2n+1}< \frac{3n+1}{6n+3}\)
b) Ta có :
\(\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)
\(\frac{n+2}{n+3}=\frac{n+3-1}{n+3}=1-\frac{1}{n+3}\)
Vì \(\frac{1}{n+1}>\frac{1}{n+3}\)nên \(1-\frac{1}{n+1}< 1-\frac{1}{n+3}\)hay \(\frac{n}{n+1}< \frac{n+2}{n+3}\)
c) giả sử \(\frac{n}{n+3}< \frac{n-1}{n+4}\)
\(\Leftrightarrow\frac{n\left(n+4\right)}{\left(n+3\right)\left(n+4\right)}< \frac{\left(n-1\right)\left(n+3\right)}{\left(n+3\right)\left(n+4\right)}\)
\(\Rightarrow n^2+4n< n^2+2n-3\)
\(\Rightarrow2n< -3\)( vô lí )
Vậy \(\frac{n}{n+3}>\frac{n-1}{n+4}\)
1.So sánh:
a, 2 mũ 6 và 6 mũ 2
b, 73+1 và 7 và 73 + 1
c, 1314 - 1313 và 1315 - 1314
d, 32+n và 23+n (n e N *)
2. Rút gọn mỗi biểu thức sau:
a) A= 1+3+32+33+.....+399+3100
b) B= 2100-299+298-297+....-23+22-2+1
So sánh:
a) \(\frac{{123}}{7}\) và 17,75
b) \( - \frac{{65}}{9}\) và -7,125.
a) Ta có:
\(\begin{array}{l}\frac{{123}}{7} = \frac{{123.4}}{{7.4}} = \frac{{492}}{{28}}\\17,75 = \frac{{1775}}{{100}} = \frac{{71}}{4} = \frac{{71.7}}{{4.7}} = \frac{{497}}{{28}}\end{array}\)
Vì 492 < 497 nên \(\frac{{492}}{{28}} < \frac{{497}}{{28}}\) hay \(\frac{{123}}{7} < 17,75\)
b) Ta có:
\(\begin{array}{l} - \frac{{65}}{9} = \frac{{( - 65).8}}{{9.8}} = \frac{{ - 520}}{{72}}\\ - 7,125 = \frac{{ - 7125}}{{1000}} = \frac{{ - 57}}{8} = \frac{{ - 57.9}}{{8.9}} = \frac{{ - 513}}{{72}}\end{array}\)
Vì 520 > 513 nên -520 < -513. Do đó, \(\frac{{ - 520}}{{72}} < \frac{{ - 513}}{{72}}\) hay \( - \frac{{65}}{9}\) < -7,125
So sánh:A=\(\frac{2009^{2008}+1}{2009^{2009}+1}\)với B=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)
Vì B là phân số bé hơn 1 nên cộng cùng một số vào tử và mẫu của phân số đó thì giá trị của B sẽ tăng thêm, ta có:
\(B=\frac{2009^{2009}+1}{2009^{2010}+1}< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009\left(2009^{2008}+1\right)}{2009\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}=A\)
Vậy B < A
So sánh:A=\(\frac{2006^{2006}+1}{2007^{2007}+1}\)và B=\(\frac{2006^{2005}+1}{2006^{2006}+1}\)