CHO tam giác ABC vuông tại A, AB=20;AC=48,BC=52. kẻ AH vuông góc BC . tính AH
Cho 2 tam giác vuông, tam giác ABC vuông tại A và tam giác MNP vuông tại M. Bik tam giác ABC = tam giác MNP, AB=20 cm,AC=15cm.Tính các cạnh của tam giác MNP
Cho tam giác ABC vuông tại A , đường cao AH . Biết AB/AC = 20/21 , AH = 420 . Tính chu vi tam giác ABC
\(\dfrac{AB}{AC}=\dfrac{20}{21}\Rightarrow AB=\dfrac{20AC}{21}\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{420^2}=\dfrac{1}{\left(\dfrac{20}{21}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{841}{400AC^2}\)
\(\Rightarrow AC=609\) \(\Rightarrow AB=\dfrac{20}{21}AC=580\)
\(BC=\sqrt{AB^2+AC^2}=841\)
Chu vị: \(609+580+841=2030\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{20}{21}\)
nên \(AB=\dfrac{20}{21}\cdot AC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{420^2}=\dfrac{1}{\left(\dfrac{20}{21}AC\right)^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{\dfrac{400}{441}AC^2}+\dfrac{\dfrac{400}{441}}{\dfrac{400}{441}AC^2}=\dfrac{1}{176400}\)
\(\Leftrightarrow\dfrac{400}{441}AC^2=336400\)
\(\Leftrightarrow AC^2=370881\)
hay AC=609(cm)
\(\Leftrightarrow AB=\dfrac{20}{21}\cdot AC=\dfrac{20}{21}\cdot609=580\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=580^2+609^2=371461\)
hay BC=841(cm)
Chu vi tam giác ABC là:
AB+AC+BC=580+609+841=2030(cm)
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Cho tam giác ABC vuông tại A AB = 15 cm AC = 20 cm .Vẽ tia Ax song song với BC và tia By vuông góc với BC tại B tia Ax cắt BC tại D
a chứng minh tam giác ABC đồng dạng với tam giác DAB
b tính BC, DA,DA
C,AB cắt AC tại I. tính diện tích tam giác BIC
Cho tam giác ABC vuông tại A AB = 15 cm AC = 20 cm .Vẽ tia Ax song song với BC và tia By vuông góc với BC tại B tia Ax cắt BC tại D
a chứng minh tam giác ABC đồng dạng với tam giác DAB
b tính BC, DA,DA
C,AB cắt AC tại I. tính diện tích tam giác BIC
Cho tam giác abc vuông tại a ,ah là đường cao của tam giác ABC AB = 15 cm AC = 20 cm BC = 25 cm tính ah
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Tam giác ABC vuông tại A có AB=10cm,AC=20=cm. Trên AC lấy M sao cho AM=5cm
A.tính độ dài BC,BM
B. Chứng minh tam giác ABC~tam giác AMB
a: \(BC=10\sqrt{5}\left(cm\right)\)
\(BM=\sqrt{10^2+5^2}=5\sqrt{5}\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔAMB vuông tại A có
AB/AM=AC/AB
nên ΔABC∼ΔAMB
cho tam giác ABC vuông tại A, AB=15 cm, AC= 20 cm, đường cao AH. Diện tích tam giác AHB=
ấn vào đúng 0
đáp án và lời giải sẽ hiện ra trước mắt