Chương I - Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quynh Existn

Cho tam giác ABC vuông tại A , đường cao AH . Biết AB/AC = 20/21 , AH = 420 . Tính chu vi tam giác ABC

 

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 14:18

\(\dfrac{AB}{AC}=\dfrac{20}{21}\Rightarrow AB=\dfrac{20AC}{21}\)

Áp dụng hệ thức lượng:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{420^2}=\dfrac{1}{\left(\dfrac{20}{21}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{841}{400AC^2}\)

\(\Rightarrow AC=609\) \(\Rightarrow AB=\dfrac{20}{21}AC=580\)

\(BC=\sqrt{AB^2+AC^2}=841\)

Chu vị: \(609+580+841=2030\)

Nguyễn Huy Tú
12 tháng 7 2021 lúc 14:24

undefined

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 14:28

Ta có: \(\dfrac{AB}{AC}=\dfrac{20}{21}\)

nên \(AB=\dfrac{20}{21}\cdot AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{420^2}=\dfrac{1}{\left(\dfrac{20}{21}AC\right)^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{400}{441}AC^2}+\dfrac{\dfrac{400}{441}}{\dfrac{400}{441}AC^2}=\dfrac{1}{176400}\)

\(\Leftrightarrow\dfrac{400}{441}AC^2=336400\)

\(\Leftrightarrow AC^2=370881\)

hay AC=609(cm)

\(\Leftrightarrow AB=\dfrac{20}{21}\cdot AC=\dfrac{20}{21}\cdot609=580\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=580^2+609^2=371461\)

hay BC=841(cm)

Chu vi tam giác ABC là:

AB+AC+BC=580+609+841=2030(cm)


Các câu hỏi tương tự
Anbert_An
Xem chi tiết
Ly Ly
Xem chi tiết
Kim Anh
Xem chi tiết
Ngọc Lê
Xem chi tiết
nguyễn Anh Khoa
Xem chi tiết
Nguyễn Hà Thảo
Xem chi tiết
Dương trung kiên
Xem chi tiết
nguyễn hùng
Xem chi tiết
Quynh Existn
Xem chi tiết