Cho △ ABC ,trung tuyến AD có G là trọng tâm ,Ve đường thẳng d qua G cắt cạnh AB;AC lần lượt ở E và F .Chứng minh:
a)\(\frac{AB}{AE}+\frac{AC}{FA}=3\)
b)\(\frac{BE}{AE}+\frac{CE}{FA}=1\)
Cho tam giác abc có trung tuyến AD trọng tâm G và AB bằng 18 cm BC = 16 cm
a> một đường thẳng d1 đi qua G và song song vs cạnh BC cắt AB tại M .Tính độ dài đoạn thẳng BM
b>Kẻ đường thẳng d2 đi qua G và song song vs cạnh DM cắt cạnh BC tại N . Tính độ dài đoạn BN
Đề năm 2008-2009 ai thần đồng giúp
cho tam giác ABC, trung tuyến AD, gọi G là trọng tâm ABC đường thẳng d đi qua G cắt AB, AC tại M và N. Qua B và C kẻ các đường thẳng song song với d cắt AD ở B' và C'. chứng minh rằng
VÀ
Cho tam giác ABC, đường trung tuyến AD, G là trọng tâm . Qua G kẻ đường thẳng d cắt AB,AC thứ tự tại M,N. Chứng Minh:
a; AB/AM + AC/AN = 3
b; BM/AM + CN/AN = 1
a: Qua B, kẻ BK//MN(K∈AD)
Qua C, kẻ CE//MN(E∈AD)
Ta có: BK//MN
CE//MN
Do đó: BK//CE
Xét ΔABC có
AD là đường trung tuyến
G là trọng tâm
Do đó: A,G,D thẳng hàng
=>\(AG=\frac23AD;DG=\frac13AD;AG=2GD\)
Xét ΔDKB và ΔDEC có
\(\hat{DBK}=\hat{DCE}\) (hai góc so le trong, BK//EC)
DB=DC
\(\hat{KDB}=\hat{EDC}\) (hai góc đối đỉnh)
Do đó: ΔDKB=ΔDEC
=>DK=DE và BK=EC
Xét ΔABK có MG//BK
nên \(\frac{AM}{AB}=\frac{AG}{AK}\)
=>\(\frac{AB}{AM}=\frac{AK}{AG}\)
Xét ΔAEC có GN//EC
nên \(\frac{AG}{AE}=\frac{AN}{AC}\)
=>\(\frac{AC}{AN}=\frac{AE}{AG}\)
\(\frac{AB}{AM}+\frac{AC}{AN}=\frac{AK}{AG}+\frac{AE}{AG}=\frac{AK+AE}{AG}\)
\(=\frac{AK+AK+KE}{AG}=\frac{2AK+2KD}{AG}=\frac{2\cdot AD}{AG}=\frac{2\cdot AD}{\frac23AD}=2:\frac23=3\)
b: Xét ΔABK có MG//BK
nên \(\frac{BM}{AM}=\frac{GK}{AG}\)
Xét ΔAEC có GN//EC
nên \(\frac{CN}{NA}=\frac{EG}{GA}\)
\(\frac{BM}{MA}+\frac{CN}{NA}=\frac{GK}{AG}+\frac{EG}{GA}=\frac{GK+GE}{GA}=\frac{GK+GK+KE}{GA}\)
\(=\frac{2GK+2KD}{GA}=\frac{2GD}{GA}=1\)
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D. a) Chứng minh ΔABD = ΔACD. b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC. c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân. d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Cho tam giác ABC, G là trọng tâm của tam giác, AM là đường trung tuyến. Đường thẳng qua d qua G cắt các cạnh AB và AC. Vẽ AA', BB', CC' vuông góc với đường thẳng d (A', B', C' thuộc d).Chứng minh AA'= BB'+CC'
Cho ΔABC, trung tuyến AD. Gọi G là trọng tâm của ΔABC. Đường thẳng d qua G cắt các cạnh AB, AC lần lượt tại M, N.
C/m:
a) \(\dfrac{AB}{AM}\) + \(\dfrac{AC}{AN}\) = 3
b) \(\dfrac{BM}{AM}\) + \(\dfrac{CN}{AN}\) = 1
Cho \(\Delta ABC\) có đường trung tuyến AD, trọng tâm G, đường thẳng d qua G cắt AB, AC lần lượt tại M và N. Tìm vị trí của đường thẳng d đế diện tichtam giác AMN có giá trị nhỏ nhất ?
Cho tam giác ABC có G là trọng tâm. Qua G vẽ đường thẳng d cắt hai cạnh AB và AC tại D và E. Chứng minh: AB/AD=AC/AE=3
Cho tam giác ABC có AM là đường trung tuyến, G là trọng tâm. Qua G vẽ đường thẳng song song với AB cắt BC ở D, qua G vẽ đường thẳng song song với AC cắt BC ở E. Chứng minh rằng: A:BD/BM=2/3 B:BD=DE=EC
Cho tam giác ABC, trung tuyến AD. Gọi G là trọng tâm. 1 đường thẳng d đi qua G cắt các cạnh AB, AC lần lượt tại M và N
Cm \(\frac{AB}{AM}+\frac{AC}{AN}=3\)
Giúp mk nha, mk đang cần gấp!!!
câu trả lời tại đây
https://olm.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%B3+G+l%C3%A0+tr%E1%BB%8Dng+t%C3%A2m.+Qua+G+v%E1%BA%BD+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+d+c%E1%BA%AFt+hai+c%E1%BA%A1nh+AB+v%C3%A0+AC+t%E1%BA%A1i+D+v%C3%A0+E.+Ch%E1%BB%A9ng+minh:+AB/AD=AC/AE=3&id=516183