cho tam giác ABC, trung tuyến AD, gọi G là trọng tâm ABC đường thẳng d đi qua G cắt AB, AC tại M và N. Qua B và C kẻ các đường thẳng song song với d cắt AD ở B' và C'. chứng minh rằng
\(\frac{AB}{AM}+\frac{AC}{AN}=3\) VÀ \(\frac{BM}{AM}+\frac{CN}{AN}=1\)
AI LÀM ĐÚNG TICK CHO
THANKS
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
1. Cho tam giác ABC, điểm D thuộc cạnh BC. Qua D kẻ các đường thẳng song song AB và AC chúng cắt AB,AC theo thứ tự ở E và F. Chứng minh hệ thức: AE/AB+AF/AC=1
2. Cho tam giác ABC, 1 đường thẳng song song với BC cắt các cạnh AB, AC theo thứ tự ở D và E. Qua C kẻ đường thẳng song song với EB cắt AB ở F. Chứng minh hệ thức AB2=AD*AF
3.Cho tam giác ABC( AB<AC) đường phân giác AD. Qua trung điểm M của BC kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. Chứng minh rằng:
a. AE=AK
b. DK=CE
Cho ΔABC có AD là trung tuyến, trọng tâm G. Dường thẳng d qua G cắt AB, AC lần lượt tại M, N. Qua B, C vẽ các đường thẳng song song với đường thẳng d, cắt AD theo thứ tự tại B' và C'. Chứng minh: \(\frac{AB}{AM}+\frac{AC}{AN}=3;\frac{BM}{AM}=\frac{CN}{AN}=1\)
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho tam giác ABC, phân giác AD, qua D kẻ đường thẳng song song với AB cắt AC tại E. Qua E kẻ đường thẳng song song với BC cắt AB tại F
a) Chứng minh AE=BF
b) Kẻ phân giác ngoài tại A của tam giác ABC cắt DE tại G. Chứng minh rằng E là trung điểm của DG
c) Đường thẳng vuông góc với AD tại D cắt AB, AC lần lượt tại H, K. Chứng minh AH=2FB
d) Từ E kẻ đường thẳng song song với DK cắt AD tại I.Chứng minh H, I, G thẳng hàng
cho tam giác ABC có 3 góc nhọn các điểm M,N thứ tự trung điểm BC và AC .các đường trung trực của BC và AC cắt nhau tại O.qua A kẻ đường thẳng song song với OM qua B kẻ đường thẳng song song với ON chúng cắt nhau tại H
a, nối MN,tam giác AHB đồng dạng với tam giac nào
b,gọi G là trọng tâm của tam giác ABC chứng minh tam giác AHG đồng dạng với tam giác MOG
c,chứng minh M,O,G thẳng hàng
Cho tam giác ABC. Gọi G là trọng tâm của tam giác. Qua G kẻ đường thẳng song song với AB nó cắt BC tại D, kẻ đường thẳng song song với AC, nó cắt BC tại E. a. So sánh các tỉ số BD/BC và EC/BC b. Chứng minh BD = DE = EC