Kẻ BM,NC//EF ( M,N thuộc AD)
Ta có \(\frac{AB}{AE}=\frac{AM}{AG},\frac{AC}{AF}=\frac{AN}{AG}\Rightarrow\frac{AB}{AE}+\frac{AC}{AF}=\frac{AM+AN}{AG}\left(1\right)\)
Ta có AM=AD-MD,AN=AD+ND. \(\Delta BMD=\Delta CDN\Rightarrow MD=ND\Rightarrow AM+AN=2AD\)
Theo tính chất trọng tâm thì AG=2/3AD
Từ (1) suy ra VT=\(\frac{2AD}{\frac{2}{3}AD}=3\)
Ta cũng có \(\frac{BE}{AE}=\frac{GM}{AG};\frac{CF}{AF}=\frac{GN}{AG}\Rightarrow\frac{BE}{AE}+\frac{CF}{AF}=\frac{GM+GN}{AG}=\frac{GD+DN+GD-MD}{AG}=\frac{2GD}{AG}=\frac{AG}{AG}=1\)