Cho O bất kì thuộc tam giác ABC. D,E,F là hình chiếu của O trên AB;BC;AC
c/m AD2+ BE2+CF2=AF2+BD2+CE2
Cho O bất kì thuộc tam giác ABC. D,E,F là hình chiếu của O trên AB;BC;AC
c/m AD^2+ BE^2+CF^2=AF^2+BD^2+CE^2
Để chứng minh công thức AD^2 + BE^2 + CF^2 = AF^2 + BD^2 + CE^2, ta sẽ sử dụng định lí Pythagoras và tính chất của hình chiếu. Gọi H là hình chiếu của O trên CF. Ta có OH ⊥ CF, vì vậy OH^2 + CH^2 = CF^2 theo định lí Pythagoras. Tương tự, gọi G là hình chiếu của O trên BD, ta có OG ⊥ BD, nên OG^2 + BG^2 = BD^2. Cuối cùng, gọi I là hình chiếu của O trên AE, ta có OI ⊥ AE, nên OI^2 + AI^2 = AE^2. Tổng cộng, ta có: AD^2 + BE^2 + CF^2 = AH^2 + BH^2 + CH^2 + BG^2 + CG^2 + AI^2 + BI^2 + CI^2 = (AH^2 + BH^2 + CH^2) + (BG^2 + CG^2) + (AI^2 + BI^2 + CI^2) = AF^2 + BD^2 + CE^2 Vậy, ta đã chứng minh được công thức AD^2 + BE^2 + CF^2 = AF^2 + BD^2 + CE^2.
Cho tam giác ABC nội tiếp đường tròn (O) và M là một điểm bất kì trên (O). Gọi D, E, F lần lượt là hình chiếu vuông góc của M trên các đường thẳng AB, BC, CA. Chứng minh D, E, F thẳng hàng
Chứng minh:
Xét trường hợp \(\Delta\)ABC nhọn và ^MBC > ^MCA (các trường hợp khác chứng minh tương tự)
Khi đó D thuộc tia đối của tia BA, E và F tương ứng nằm trên cạnh BC, CA.
Vì các tứ giác MDBE, ABMC và MCFE nội tiếp nên ^MED = ^MBD = ^ACM = 180o - ^MEM
=> ^MED + ^MEF = 180o <=> ^DEF = 180o.
Vậ D, E, F thẳng hàng (đpcm)
P/s: Bài toán trên theo mình nhớ không lầm thì là đường thẳng sim sơn
cho tam giác ABC nội tiếp (O), lấy M bất kì D,E,F là hình chiếu của M trên BC,CA,AB CMR D,E,F thẳng hàng
cho Ax là tiếp tuyến của(O) MH vuông góc với Ax cmr MH.MD=ME.MF
cho tam giác ABC nội tiếp (O), lấy M bất kì D,E,F là hình chiếu của M trên BC,CA,AB
a)CMR D,E,F thẳng hàng
b) vẽ Ax là tiếp tuyến của(O) MH vuông góc với Ax cmr MH.MD=ME.MF
cho tam giác đều ABC, đường cao AD, H là trực tâm. Lấy điểm M bất kì thuộc BC, E và F theo thứ tự là hình chiếu của M trên AB và AC. Gọi I là hình chiếu của AM.
a/ Cmr: EI=DF
b/ Gọi O là giao điểm của DI và EF. Cmr: M, O, H thẳng hàng.
Cho tam giác ABC vuông tại A, M là điểm bất kì thuộc cạnh BC, D và E là hình chiếu của M trên AB và AC.
a. Chứng minh DE = AM.
b. F là điểm đối xứng với M qua AC. Chứng minh ADEF là hình bình hành.
c. AH là đường cao của tam giác ABC. Chứng minh tam giác DHE vuông.
d. Điểm M nằm ở vị trí nào trên BC để tứ giác ABMF là hình bình hành.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Suy ra: AM=DE
cho tam giác ABC nội tiếp đường tròn (O;R), BC= Rcan3. M là điểm bất kì trên cung nhỏ BC. Gọi D,E,F lần lượt là hình chiếu của M lên AB,BC,CA.
a) Chứng minh 4 điểm B,D,E,M cùng thuộc một đường tròn
b) Tính diện tích hình viên phân tạo bởi cung nhỏ BC
Cho tam giác ABC vuông tại A. M là điểm bất kì thuộc cạnh BC . Gọi D,E lần lượt là hình chiếu vuông góc của của M lên AB, AC và O là trung điểm của DE .
a) Chứng minh ba điểm A,O,M thẳng hàng.
b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào?
c) Điểm M ở vị trí nào trên cạnh BC thì đoạn AM có độ dài nhỏ nhất?
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Suy ra: Hai đường chéo AM và DE cắt nhau tại trung điểm của mỗi đường
hay A,O,M thẳng hàng
tam giác ABC nhọn nội tiếp đường tròn (O;R), N bất kì thuộc BC(N≠B,C). AN cắt (O) tại M; E,H là hình chiếu của M trên AB,AC. MD vuông góc BC(Dϵ BC)
1 CMR : H,D,E thẳng hàng
2 tìm vị trí của N trên BC để EH Max
TRong tam giác ABC lấy điểm O bất kì . D, E, F thứ tự là hình chiếu của O trên AB, BC , CA . Chứng minh rằng
AD^2 + BE^2 + CF^2 = AF^2 + CE^2 + BD^2
vẽ hình giùm mình với nha