Tìm x, y, z:
3x = 2y; 7y = 5z và x - y + 2z = -111
1) Tìm x,y,z biết :
a)3x=2y=z va x+y+2z= 105
b) x=1/2y=3z va 3x-2y+z= 1
1) Tìm x,y,z biết :
a)3x=2y=z va x+y+2z= 105
b) x=1/2y=3z va 3x-2y+z= 1
Tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4và 3x 2y 5z 96 tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4 và 3x 2y
tìm x y z biết 2 /3x - 1/2y = 2/z và 3x +2y +z = 1
cho \(0< x< y\le z\le1\)
và \(3x+2y+z\le4\)
tìm max=\(3x^2+2y^2+z^2\)
Tham khảo
Khai triển Abel ta có:
\(S=\left(z-y\right)z+\left(y-x\right)\left(z+2y\right)+x\left(3x+2y+z\right)\)
\(\le\left(z-y\right).1+\left(y-x\right).3+4x=x+2y+z\)
\(=\left(1-1\right)z+\left(1-\dfrac{1}{3}\right)\left(2y+z\right)+\dfrac{1}{3}\left(3x+2y+z\right)\)
\(\le\dfrac{2}{3}.3+\dfrac{1}{3}.4=\dfrac{10}{3}\)
Dấu = xảy ra khi \(x=\dfrac{1}{3},y=z=1\)
x,y,z>0 ; 1/x+y + 1/y+z + 1/z+x = 6
Tìm MaxP=1/(3x+3y+2z) + 1/(3x+2y+3z) + 1/(2x+2y+3z)
\(\frac{16}{3x+3y+2z}=\frac{16}{\left(x+y\right)+\left(x+y\right)+\left(x+z\right)+\left(y+z\right)}\le\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\)
Tương tự:
\(\frac{16}{3x+2y+3z}\le\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{z+y}\)
\(\frac{16}{2x+3y+3z}\le\frac{1}{y+z}+\frac{1}{z+y}+\frac{1}{y+x}+\frac{1}{x+z}\)
\(\Rightarrow16P\le4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=4\cdot6=24\)
\(\Rightarrow P\le\frac{3}{2}\) tại \(x=y=z=\frac{1}{4}\)
Tìm x,y,z biết
3x=2y;2y=5z và x-y+z=32
Ta có : 3x=2y=2y
=> x/2=y/3
=>x/10=y/15 (1)
2y=5z
=>y/5=z/2
=>y/15=z/6(2)
Từ 1 và 2 =>x/10=y/15=z/6
Tự giải
Ta có : \(3x=2y\Rightarrow x=\frac{2y}{3}\)(1)
\(2y=5z\Rightarrow z=\frac{2y}{5}\)(2)
Thay (1) và (2) vào biểu thức x - y + z = 32 ; ta được:
\(\frac{2y}{3}-y+\frac{2y}{5}=32\Rightarrow10y-15y+6y=480\Rightarrow y=480\)
Với \(y=480\Rightarrow x=\frac{2.480}{3}=320;z=\frac{2.480}{5}=192\)
KL :
Cho \(0< x< y\le z\le1\) và \(3x+2y+z\le4\). Tìm Max \(S=3x^2+2y^2+z^2\)
\(S=x\left(3x+2y+z\right)+\left(y-x\right)\left(2y+z\right)+\left(z-y\right).y\)
\(S\le4x+3\left(y-x\right)+z-y=x+2y+z\)
\(S\le\dfrac{1}{3}\left(3x+2y+z\right)+\dfrac{2}{3}\left(2y+z\right)\le\dfrac{1}{3}.4+\dfrac{2}{3}.3=\dfrac{10}{3}\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};1;1\right)\)
Tìm x, y ,z biết 2/3x=1/2y=2z và 3x+2y+z=1
1) Tìm x,y,z biết :
a)3x=2y=z va x+y+2z= 105
b) x=1/2y=3z va 3x-2y+z= 1
giúp tôi được thì tôi cho 5 like !
\(3x=2y=z\Leftrightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{2}}=\frac{z}{1}=\frac{x+y+2z}{\frac{1}{3}+\frac{1}{2}+2}=\frac{105}{\frac{17}{6}}=\frac{630}{17}\)
x = 1/3 . 630/17 =210/17
y=1/2 . 630/17 =315/17
z =760/17
b)\(\frac{x}{1}=\frac{y}{2}=\frac{z}{\frac{1}{3}}=\frac{3x-2y+z}{3.1-2.2+\frac{1}{3}}=\frac{1}{-\frac{2}{3}}=-\frac{3}{2}\)
x=-3/2
y=-3/2.2 =-3
z =-3/2 .1/3 = -1/2