Trong mặt phẳng với hệ tọa độ Oxy,cho hai điểm A(2;3) và B(1;4).Đường thảng nào sau đây cách đều hai điểm A và B?
A. x-y+2=0
B. x+2y=0
C. 2x-2y+10=0
D. x-y+100=0
Trong mặt phẳng tọa độ với hệ tọa độ Oxy, cho hai điểm A(-2,3), B(1,-6). Tọa độ vecto AB là?
\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(3;-9\right)\)
câu 173. Trong mặt phẳng với hệ tọa độ Oxy , cho hai điểm A(2,3) và B(1,4) . Đường thẳng nào cách đều hai điểm A và B?
Lời giải:
Đường trung trực của $AB$ sẽ cách đều 2 điểm $A,B$. Gọi đường này là $d$
$\overrightarrow{n_d}=\overrightarrow{AB}=(-1,1)$
$(d)$ là đường trung trực của $AB$ nên đi qua trung điểm $I(\frac{3}{2}, \frac{7}{2})$ của $AB$
Do đó PTĐT $(d)$ là:
$-1(x-\frac{3}{2})+1(y-\frac{7}{2}=0$
$\Leftrightarrow -x+y-2=0$
Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1;1) và B(3;3) tìm tọa độ điểm M thuộc trục hoành để góc AMB nhỏ nhất
Trong mặt phẳng với hệ tọa độ vuông góc Oxy cho điểm M(-1;1). Viết phương trình đường thẳng qua M và tạo với hai trục tọa độ một tam giác vuông cân.
Trong mặt phẳng với hệ tọa độ vuông góc Oxy cho điểm M(-1;1). Viết phương trình đường thẳng qua M và tạo với hai trục tọa độ một tam giác vuông cân.
gọi Pt đường thảng .....y=ax+b(d)
d đi qua M(-1,1) 1=-a+b⇔b=a+1
gọi d cắt Ox tại \(A\left(-\dfrac{b}{a},O\right)\)
d cắt Oy tại \(B\left(O,b\right)\)
\(\Delta AOB\) vuông cân tại o
\(\Rightarrow OA=OB\Rightarrow\left(-\dfrac{b}{a}\right)^2+o^2=o^2+b^2\)
\(\dfrac{b^2}{a^2}=b^2\Leftrightarrow\dfrac{1}{a^2}=1\Leftrightarrow a^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=2\\b=0\left(loại\right)\end{matrix}\right.\)
(do d cắt 2 trục tọa độ nên a,b≠0)
vậy PtT đg thảng d:y=x+2
Gọi pt đường thẳng có dạng \(y=ax+b\)
Đường thẳng qua M tạo 2 trục tọa độ 1 tam giác vuông cân khi nó có hệ số góc \(a=1\) hoặc \(a=-1\)
\(\Rightarrow\left[{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\)
Thay tọa độ M vào phương trình ta được:
\(\left[{}\begin{matrix}1=-1+b\\1=-\left(-1\right)+b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=2\\b=0\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y=x+2\\y=-x\end{matrix}\right.\)
1.Trong mặt phẳng hệ tọa độ Oxy, viết phương trình đường thẳng Δ qua M(1,2) cắt Ox tại A, cắt Oy tại B sao cho OA+OB =12 2.Cho 3 điểm A(2,0), B(3,4), C(1,1), Viết phương trình đưởng thẳng qua C cách đều hai điểm A, B 3.Trong hệ tọa độ Oxy cho tam giác ABC có BC= x+y=9=0, đường cao B, C lần lượt là: d1: x+2y-13=0, d2:7x=5y-49=0. Tìm tọa độ điểm A
Trong không gian với hệ tọa độ Oxy, cho hai điểm A(2;3;1), B(0;1;2). Phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB là:
A. (P): 2x+2y-z=0
B. (P): 2x+2y-z-9=0
C. (P): 2x+4y+3z-19=0
D. (P): 2x+4y+3z-10=0.
Đáp án B
là véc-tơ pháp tuyến của mặt phẳng (P).
Phương trình của mặt phẳng (P) là -2(x-2)-2(y-3)+(z-1)=0 hay 2x+2y-z-9=0.
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua điểm M(1;1;1) và vuông góc với hai mặt phẳng (Oxy),(Ozx).
A. y-1=0.
B. x-1=0.
C. z-1=0.
D. x+z-2=0.
trong mặt phẳng hệ tọa độ Oxy cho hai điểm A(3;-1) ; B(1;1) . Tìm tọa độ điểm E biết điểm E thuộc trục tung và 3 điểm A , B , E thẳng hàng .
Trong không gian với hệ tọa độ Oxy cho mặt phẳng P : 2 x - y - z + 1 = 0 và hai điểm A 2 ; 1 ; 1 , B 3 ; 3 ; 2 . Điểm M a ; b ; c với b > 0 nằm trong mặt phẳng (P) sao cho O M ⊥ A B và M A = 26 . Giá trị của tổng a + b + c bằng.
A. 1
B. 3
C. -2
D. 5
Chọn C.
Phương pháp: Dựa vào dữ kiện bài toán để xác định tọa độ điểm M.
Cách giải: Ta có: