Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Thúy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 7 2017 lúc 14:55

Đáp án A

nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 11 2019 lúc 21:51

\(a\ne0\)

a/ \(\left\{{}\begin{matrix}64a+8b+c=0\\-\frac{b}{2a}=6\\\frac{4ac-b^2}{4a}=-12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-12a\\4ac-b^2+48a=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=32a\\b=-12a\\4a.\left(32a\right)-\left(-12a\right)^2+48a=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-36\\c=96\end{matrix}\right.\)

\(\Rightarrow y=3x^2-36x+96\)

b/ \(\left\{{}\begin{matrix}c=6\\-\frac{b}{2a}=-2\\\frac{4ac-b^2}{4a}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}c=6\\b=4a\\24a-16a^2=16a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=2\\c=6\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x^2+2x+6\)

Khách vãng lai đã xóa
Nguyễn Ngọc Trâm
Xem chi tiết
Akai Haruma
22 tháng 11 2021 lúc 23:15

Lời giải:

$(P)$ đi qua đi qua $A(0;3), B(-1;4)$ khi mà:

\(\left\{\begin{matrix} y_A=4x_A^2+bx_A+c\\ y_B=4x_B^2+bx_B+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3=4.0^2+b.0+c\\ 4=4.(-1)^2+b(-1)+c\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=3\\ -b+c=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=3\\ b=3\end{matrix}\right.\)

Vậy $(P): y=4x^2+3x+3$

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 7 2019 lúc 8:34

Đáp án B

Thọ Lê
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 12 2021 lúc 21:07

\(\Leftrightarrow\left\{{}\begin{matrix}1+b+c=0\\4-2b+c=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c=-1\\c-2b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{11}{3}\\c=\dfrac{8}{3}\end{matrix}\right.\\ \Leftrightarrow\left(P\right):y=x^2-\dfrac{11}{3}x+\dfrac{8}{3}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 6 2017 lúc 7:32

Đáp án A

Đỗ Quốc Tân
Xem chi tiết
Phạm Ngọc
26 tháng 10 2018 lúc 10:46
https://i.imgur.com/nsNtpfc.jpg
Trần Như Đức Thiên
Xem chi tiết
Akai Haruma
5 tháng 1 2022 lúc 21:10

Lời giải:
Parabol đi qua $A(2;19)$ nên $y_A=3x_A^2+bx_A+c$ hay $19=12+2b+c$

$\Rightarrow 2b+c=7(1)$

$x=\frac{-2}{3}$ là trục đối xứng 

$\Leftrightarrow \frac{-b}{2.3}=\frac{-2}{3}$

$\Rightarrow b=4(2)$

Từ $(1); (2)\Rightarrow c=-1$

Vậy parabol có pt $y=3x^2+4x-1$

Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 21:07

Theo đề, ta có:

\(\left\{{}\begin{matrix}\dfrac{-b}{6}=\dfrac{-2}{3}\\12+2b+c=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\c=-1\end{matrix}\right.\)