Cho parabol (p): ax2+bx+1
Biết rằng 33 parabol đó đi qua 2 điểm A(1;4) và B(-1;2) parabol đó là
Xác định tọa độ giao điểm của parabol \(y=ax^2+bx+c\) với trục tung ?
Tìm điều kiện để parabol này cắt trục hoành tại hai điểm phân biệt và viết tọa độ của các giao điểm trong trường hợp đó ?
Biết parabol y=ax2+bx+c đi qua gốc tọa đồ và có đỉnh I(-1;-3) . Giá trị của a,b,c là
Xác định a, b, c biết parabol \(y=ax^2+bx+c\)
a. Đi qua 3 điểm \(A\left(0;-1\right);B\left(1;-1\right);C\left(-1;1\right)\)
b. Có đỉnh \(I\left(1;4\right)\) và đi qua điểm \(D\left(3;0\right)\)
1) Xác định Parabol y = ax2 +bx+c, biết parabol có đỉnh nằm trên trục hoành và đi qua hai điểm A (0;1) và B(2;1)
2) BIẾT rằng (P):y=ax2+bx+c đi qua điểm A(2;3) và có đỉnh a khác 0. Tìm a,b,c
3) Tìm giá trị lớn nhất và nhỏ nhất của hàm số y=x2-4x+3 trên đoạn [-2;1]
Giúp em vs ạ TvT
2. Cho parabol (P): y= ax + bx+c với a
xác định parabol (P) : y = ax2 + bx +4, biết rằng (P) có đỉnh là I (\(\frac{3}{2}\); \(\frac{25}{4}\))
Viết phương trình đường thẳng parabol y=ax2 + bx + c biết rằng (P) đi qua điểm E(1;-1) và đạt GTLN bằng 5 tại x=-2
Xác định hàm số bậc hai y = ax2 + bx + c có đồ thị là parabol (P) nhận đường thẳng x = 2 làm trục đối xứng và đi qua các điểm M(1;0) và N(4;-3)